SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Taylor Barry) "

Search: WFRF:(Taylor Barry)

  • Result 1-10 of 49
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • 2021
  • swepub:Mat__t
  •  
2.
  •  
3.
  • Kanai, M, et al. (author)
  • 2023
  • swepub:Mat__t
  •  
4.
  • 2021
  • swepub:Mat__t
  •  
5.
  • Bravo, L, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
6.
  • Tabiri, S, et al. (author)
  • 2021
  • swepub:Mat__t
  •  
7.
  • Khatri, C, et al. (author)
  • Outcomes after perioperative SARS-CoV-2 infection in patients with proximal femoral fractures: an international cohort study
  • 2021
  • In: BMJ open. - : BMJ. - 2044-6055. ; 11:11, s. e050830-
  • Journal article (peer-reviewed)abstract
    • Studies have demonstrated high rates of mortality in people with proximal femoral fracture and SARS-CoV-2, but there is limited published data on the factors that influence mortality for clinicians to make informed treatment decisions. This study aims to report the 30-day mortality associated with perioperative infection of patients undergoing surgery for proximal femoral fractures and to examine the factors that influence mortality in a multivariate analysis.SettingProspective, international, multicentre, observational cohort study.ParticipantsPatients undergoing any operation for a proximal femoral fracture from 1 February to 30 April 2020 and with perioperative SARS-CoV-2 infection (either 7 days prior or 30-day postoperative).Primary outcome30-day mortality. Multivariate modelling was performed to identify factors associated with 30-day mortality.ResultsThis study reports included 1063 patients from 174 hospitals in 19 countries. Overall 30-day mortality was 29.4% (313/1063). In an adjusted model, 30-day mortality was associated with male gender (OR 2.29, 95% CI 1.68 to 3.13, p<0.001), age >80 years (OR 1.60, 95% CI 1.1 to 2.31, p=0.013), preoperative diagnosis of dementia (OR 1.57, 95% CI 1.15 to 2.16, p=0.005), kidney disease (OR 1.73, 95% CI 1.18 to 2.55, p=0.005) and congestive heart failure (OR 1.62, 95% CI 1.06 to 2.48, p=0.025). Mortality at 30 days was lower in patients with a preoperative diagnosis of SARS-CoV-2 (OR 0.6, 95% CI 0.6 (0.42 to 0.85), p=0.004). There was no difference in mortality in patients with an increase to delay in surgery (p=0.220) or type of anaesthetic given (p=0.787).ConclusionsPatients undergoing surgery for a proximal femoral fracture with a perioperative infection of SARS-CoV-2 have a high rate of mortality. This study would support the need for providing these patients with individualised medical and anaesthetic care, including medical optimisation before theatre. Careful preoperative counselling is needed for those with a proximal femoral fracture and SARS-CoV-2, especially those in the highest risk groups.Trial registration numberNCT04323644
  •  
8.
  • Klionsky, Daniel J., et al. (author)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • In: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Research review (peer-reviewed)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
9.
  • Leong, Karen S. W., et al. (author)
  • Associations of Prenatal and Childhood Antibiotic Exposure With Obesity at Age 4 Years
  • 2020
  • In: JAMA Network Open. - : AMER MEDICAL ASSOC. - 2574-3805. ; 3:1
  • Journal article (peer-reviewed)abstract
    • Importance Although antibiotics are associated with obesity in animal models, the evidence in humans is conflicting. Objective To assess whether antibiotic exposure during pregnancy and/or early childhood is associated with the development of childhood obesity, focusing particularly on siblings and twins. Design, Setting, and Participants This cross-sectional national study included 284 & x202f;211 participants (132 & x202f;852 mothers and 151 & x202f;359 children) in New Zealand. Data analyses were performed for 150 & x202f;699 children for whom data were available, 30 & x202f;696 siblings, and 4188 twins using covariate-adjusted analyses, and for 6249 siblings and 522 twins with discordant outcomes using fixed-effects analyses. Data analysis was performed November 2017 to March 2019. Exposure Exposure to antibiotics during pregnancy and/or early childhood. Main Outcomes and Measures The main outcome is odds of obesity at age 4 years. Anthropometric data from children born between July 2008 and June 2011 were obtained from the B4 School Check, a national health screening program that records the height and weight of 4-year-old children in New Zealand. These data were linked to antibiotics (pharmaceutical records) dispensed to women before conception and during all 3 trimesters of pregnancy and to their children from birth until age 2 years. Results The overall study population consisted of 132 & x202f;852 mothers and 151 & x202f;359 children (77 & x202f;610 [51.3%] boys) who were aged 4 to 5 years when their anthropometrical measurements were assessed. Antibiotic exposure was common, with at least 1 course dispensed to 35.7% of mothers during pregnancy and 82.3% of children during the first 2 years of life. Results from covariate-adjusted analyses showed that both prenatal and early childhood exposures to antibiotics were independently associated with obesity at age 4 years, in a dose-dependent manner. Every additional course of antibiotics dispensed to the mothers yielded an adjusted odds ratio (aOR) of obesity in their children (siblings) of 1.02 (95% CI, 0.99-1.06), which was similar to the odds across pregnancy for the whole population (aOR, 1.06; 95% CI, 1.04-1.07). For the child's exposure, the aOR for the association between antibiotic exposure and obesity was 1.04 (95% CI, 1.03-1.05) among siblings and 1.05 (95% CI, 1.02-1.09) among twins. However, fixed-effects analyses of siblings and twins showed no associations between antibiotic exposure and obesity, with aORs of 0.95 (95% CI, 0.90-1.00) for maternal exposure, 1.02 (95% CI, 0.99-1.04) for child's exposure, and 0.91 (95% CI, 0.81-1.02) for twins' exposure. Conclusions and Relevance Although covariate-adjusted analyses demonstrated an association between antibiotic exposure and odds of obesity, further analyses of siblings and twins with discordant outcomes showed no associations. Thus, these discordant results likely reflect unmeasured confounding factors. Question Is antibiotic exposure during pregnancy and/or during early childhood associated with the development of childhood obesity? Findings This cross-sectional national study of 284 & x202f;211 participants (132 & x202f;852 mothers and 151 & x202f;359 children) in New Zealand found that both prenatal and early childhood exposures to antibiotics were independently associated with obesity at age 4 years in a dose-dependent manner. However, fixed-effects analyses of siblings and twins with discordant outcomes showed no associations between antibiotic exposure and obesity. Meaning Although judicious use of antibiotics is necessary, antibiotics are unlikely to be a major contributor to childhood obesity. This cross-sectional study of mothers and their children in New Zealand assesses whether exposure to antibiotics during pregnancy and/or early childhood is associated with the development of childhood obesity.
  •  
10.
  • Shackleton, Nichola, et al. (author)
  • Decomposing ethnic differences in body mass index and obesity rates among New Zealand pre-schoolers
  • 2019
  • In: International Journal of Obesity. - : NATURE PUBLISHING GROUP. - 0307-0565 .- 1476-5497. ; 43:10, s. 1951-1960
  • Journal article (peer-reviewed)abstract
    • Objective To determine the extent to which ethnic differences in BMI Z-scores and obesity rates could be explained by the differential distribution of demographic (e.g. age), familial (e.g. family income), area (e.g. area deprivation), parental (e.g. immigration status), and birth (e.g. gestational age) characteristics across ethnic groups. Methods We used data on 4-year-old children born in New Zealand who attended the B4 School Check between the fiscal years of 2010/2011 to 2015/2016, who were resident in the country when the 2013 census was completed (n = 253,260). We implemented an Oaxaca-Blinder decomposition to explain differences in BMI Z-score and obesity between Maori (n = 63,061) and European (n = 139,546) children, and Pacific (n = 21,527) and European children. Results Overall, 15.2% of the children were obese and mean BMI Z-score was 0.66 (SD = 1.04). The Oaxaca-Blinder decomposition demonstrated that the difference in obesity rates between Maori and European children would halve if Maori children experienced the same familial and area level conditions as Europeans. If Pacific children had the same characteristics as European children, differences in obesity rates would reduce by approximately one third, but differences in mean BMI Z-scores would only reduce by 16.1%. Conclusion The differential distribution of familial, parental, area, and birth characteristics across ethnic groups explain a substantial percentage of the ethnic differences in obesity, especially for Maori compared to European children. However, marked disparities remain.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 49

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view