SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Thil Francois) "

Search: WFRF:(Thil Francois)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Grasse, Patricia, et al. (author)
  • GEOTRACES inter-calibration of the stable silicon isotope composition of dissolved silicic acid in seawater
  • 2017
  • In: Journal of Analytical Atomic Spectrometry. - : Royal Society of Chemistry (RSC). - 0267-9477 .- 1364-5544. ; 32:3, s. 562-578
  • Journal article (peer-reviewed)abstract
    • The first inter-calibration study of the stable silicon isotope composition of dissolved silicic acid in seawater, delta Si-30(OH)(4), is presented as a contribution to the international GEOTRACES program. Eleven laboratories from seven countries analyzed two seawater samples from the North Pacific subtropical gyre (Station ALOHA) collected at 300 m and at 1000 m water depth. Sampling depths were chosen to obtain samples with a relatively low (9 mmol L-1, 300 m) and a relatively high (113 mmol L-1, 1000 m) silicic acid concentration as sample preparation differs for low- and highconcentration samples. Data for the 1000 m water sample were not normally distributed so the median is used to represent the central tendency for the two samples. Median delta Si-30(OH)(4) values of +1.66& for the low-concentration sample and +1.25& for the high-concentration sample were obtained. Agreement among laboratories is overall considered very good; however, small but statistically significant differences among the mean isotope values obtained by different laboratories were detected, likely reflecting inter-laboratory differences in chemical preparation including pre-concentration and purification methods together with different volumes of seawater analyzed, and the use of different mass spectrometers including the Neptune MC-ICP-MS (Thermo Fisher (TM), Germany), the Nu Plasma MC-ICP-MS (Nu Instruments (TM), Wrexham, UK), and the Finnigan (TM) (now Thermo Fisher (TM), Germany) MAT 252 IRMS. Future studies analyzing delta Si-30(OH)(4) in seawater should also analyze and report values for these same two reference waters in order to facilitate comparison of data generated among and within laboratories over time.
  •  
2.
  • Gdaniec, Sandra, et al. (author)
  • Thorium and Protactinium isotopes as tracers of marine particle fluxes and deep water circulation in the Mediterranean Sea
  • 2018
  • In: Marine Chemistry. - : Elsevier. - 0304-4203 .- 1872-7581. ; 199, s. 12-23
  • Journal article (peer-reviewed)abstract
    • 231Pa, 230Th and 232Th were analyzed in unfiltered sea water samples (n = 66) and suspended particles (n = 19) collected in the Mediterranean Sea during the MedSeA-GA04-S cruise along the GEOTRACES section GA04S and used to investigate mechanisms controlling the distribution and fractionation of Pa and Th in an ocean margin environment. 231Pa and230Th are particle reactive radionuclides and are often used astracers of processes such as boundary scavenging, particle transport and ocean circulation. The depth profiles of total 231Pa and 230Th concentrations in the Mediterranean Sea displayed non-linear shapes. Higher total 232Th concentrations were observed at the straits and in deepwaters pointing at lithogenic sources. Fractionation factors FTh/Pa ranged from 1.4 to 9. Application of a box-model illustrated that 94 % of the 231Pa and almost all of the 230Th (99.9 %) produced in the Mediterranean Sea is removed to the sediment by scavenging. The negligible export of 230Th to the Atlantic Ocean, leads to a reevaluation of the mean settling speed of the filtered particles, which is now estimated to 500-1000 m/y. The low FTh/Pa fractionation factors are attributed to the efficient scavenging and lack of transport of 231Pa to the Atlantic Ocean.
  •  
3.
  • Grasse, P., et al. (author)
  • GEOTRACES Intercalibration of the Stable Silicon Isotope Composition of Dissolved Silicic Acid in Seawater
  • 2017
  • In: Journal of Analytical Atomic Spectrometry. - London. - 0267-9477. ; 32, s. 562-578
  • Journal article (peer-reviewed)abstract
    • The first inter-calibration study of the stable silicon isotope composition of dissolved silicic acid in seawater, d30Si(OH)4, is presented as a contribution to the international GEOTRACES program. Eleven laboratories from seven countries analyzed two seawater samples from the North Pacific subtropical gyre (Station ALOHA) collected at 300 m and at 1000 m water depth. Sampling depths were chosen to obtain samples with a relatively low (9 mmol L-1, 300 m) and a relatively high (113 mmol L-1, 1000 m) silicic acid concentration as sample preparation differs for low- and high concentration samples. Data for the 1000 m water sample were not normally distributed so the median is used to represent the central tendency for the two samples. Median d30Si(OH)4 values of +1.66‰ for the low-concentration sample and +1.25‰ for the high-concentration sample were obtained. Agreement among laboratories is overall considered very good; however, small but statistically significant differences among the mean isotope values obtained by different laboratories were detected, likely reflecting inter-laboratory differences in chemical preparation including preconcentration and purification methods together with different volumes of seawater analyzed, andthe use of different mass spectrometers including the Neptune MC-ICP-MS (Thermo Fisher™, Germany), the Nu Plasma MC-ICP-MS (Nu Instruments™, Wrexham, UK), and the Finnigan™ (now Thermo Fisher™, Germany) MAT 252 IRMS. Future studies analyzing d30Si(OH)4 in seawater should also analyze and report values for these same two reference waters in order to facilitate comparison of data generated among and within laboratories over time.
  •  
4.
  • Gutjahr, Marcus, et al. (author)
  • Sub‐Permil Interlaboratory Consistency for Solution‐Based Boron Isotope Analyses on Marine Carbonates
  • 2021
  • In: Geostandards and Geoanalytical Research. - : John Wiley & Sons. - 1639-4488 .- 1751-908X. ; 45:1, s. 59-75
  • Journal article (peer-reviewed)abstract
    • Boron isotopes in marine carbonates are increasingly used to reconstruct seawater pH and atmospheric pCO2 through Earth’s history. While isotope ratio measurements from individual laboratories are often of high quality, it is important that records generated in different laboratories can equally be compared. Within this Boron Isotope Intercomparison Project (BIIP), we characterised the boron isotopic composition (commonly expressed in δ11B) of two marine carbonates: Geological Survey of Japan carbonate reference materials JCp‐1 (coral Porites) and JCt‐1 (giant clam Tridacna gigas). Our study has three foci: (i) to assess the extent to which oxidative pre‐treatment, aimed at removing organic material from carbonate, can influence the resulting δ11B; (ii) to determine to what degree the chosen analytical approach may affect the resultant δ11B, and (iii) to provide well‐constrained consensus δ11B values for JCp‐1 and JCt‐1. The resultant robust mean and associated robust standard deviation (s*) for un‐oxidised JCp‐1 is 24.36 ± 0.45‰ (2s*), compared with 24.25 ± 0.22‰ (2s*) for the same oxidised material. For un‐oxidised JCt‐1, respective compositions are 16.39 ± 0.60‰ (2s*; un‐oxidised) and 16.24 ± 0.38‰ (2s*; oxidised). The consistency between laboratories is generally better if carbonate powders were oxidatively cleaned prior to purification and measurement.
  •  
5.
  • Waelbroeck, Claire, et al. (author)
  • Consistently dated Atlantic sediment cores over the last 40 thousand years
  • 2019
  • In: Scientific Data. - : NATURE PUBLISHING GROUP. - 2052-4463. ; 6
  • Journal article (peer-reviewed)abstract
    • Rapid changes in ocean circulation and climate have been observed in marine-sediment and ice cores over the last glacial period and deglaciation, highlighting the non-linear character of the climate system and underlining the possibility of rapid climate shifts in response to anthropogenic greenhouse gas forcing. To date, these rapid changes in climate and ocean circulation are still not fully explained. One obstacle hindering progress in our understanding of the interactions between past ocean circulation and climate changes is the difficulty of accurately dating marine cores. Here, we present a set of 92 marine sediment cores from the Atlantic Ocean for which we have established age-depth models that are consistent with the Greenland GICC05 ice core chronology, and computed the associated dating uncertainties, using a new deposition modeling technique. This is the first set of consistently dated marine sediment cores enabling paleoclimate scientists to evaluate leads/lags between circulation and climate changes over vast regions of the Atlantic Ocean. Moreover, this data set is of direct use in paleoclimate modeling studies.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view