SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Thomas Vinai C.) "

Search: WFRF:(Thomas Vinai C.)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Campbell, Christopher, et al. (author)
  • Accumulation of succinyl coenzyme a perturbs the methicillin-resistant staphylococcus aureus (Mrsa) succinylome and is associated with increased susceptibility to beta-lactam antibiotics
  • 2021
  • In: mBio. - : American Society for Microbiology. - 2161-2129 .- 2150-7511. ; 12:3
  • Journal article (peer-reviewed)abstract
    • Penicillin binding protein 2a (PBP2a)-dependent resistance to β-lactam antibiotics in methicillin-resistant Staphylococcus aureus (MRSA) is regulated by the activity of the tricarboxylic acid (TCA) cycle via a poorly understood mechanism. We report that mutations in sucC and sucD, but not other TCA cycle enzymes, negatively impact β-lactam resistance without changing PBP2a expression. Increased intracellular levels of succinyl coenzyme A (succinyl-CoA) in the sucC mutant significantly perturbed lysine succinylation in the MRSA proteome. Suppressor mutations in sucA or sucB, responsible for succinyl-CoA biosynthesis, reversed sucC mutant phenotypes. The major autolysin (Atl) was the most succinylated protein in the proteome, and increased Atl succinylation in the sucC mutant was associated with loss of autolytic activity. Although PBP2a and PBP2 were also among the most succinylated proteins in the MRSA proteome, peptidoglycan architecture and cross-linking were unchanged in the sucC mutant. These data reveal that perturbation of the MRSA succinylome impacts two interconnected cell wall phenotypes, leading to repression of autolytic activity and increased susceptibility to β-lactam antibiotics.
  •  
2.
  • Zeden, Merve S., et al. (author)
  • Metabolic reprogramming and altered cell envelope characteristics in a pentose phosphate pathway mutant increases MRSA resistance to β-lactam antibiotics
  • 2023
  • In: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 19:7
  • Journal article (peer-reviewed)abstract
    • Central metabolic pathways control virulence and antibiotic resistance, and constitute potential targets for antibacterial drugs. In Staphylococcus aureus the role of the pentose phosphate pathway (PPP) remains largely unexplored. Mutation of the 6-phosphogluconolactonase gene pgl, which encodes the only non-essential enzyme in the oxidative phase of the PPP, significantly increased MRSA resistance to β-lactam antibiotics, particularly in chemically defined media with physiologically-relevant concentrations of glucose, and reduced oxacillin (OX)-induced lysis. Expression of the methicillin-resistance penicillin binding protein 2a and peptidoglycan architecture were unaffected. Carbon tracing and metabolomics revealed extensive metabolic reprogramming in the pgl mutant including increased flux to glycolysis, the TCA cycle, and several cell envelope precursors, which was consistent with increased β-lactam resistance. Morphologically, pgl mutant cells were smaller than wild-type with a thicker cell wall and ruffled surface when grown in OX. The pgl mutation reduced resistance to Congo Red, sulfamethoxazole and oxidative stress, and increased resistance to targocil, fosfomycin and vancomycin. Levels of lipoteichoic acids (LTAs) were significantly reduced in pgl, which may limit cell lysis, while the surface charge of pgl cells was significantly more positive. A vraG mutation in pgl reversed the increased OX resistance phenotype, and partially restored wild-type surface charge, but not LTA levels. Mutations in vraF or graRS from the VraFG/GraRS complex that regulates DltABCD-mediated d-alanylation of teichoic acids (which in turn controls β-lactam resistance and surface charge), also restored wild-type OX susceptibility. Collectively these data show that reduced levels of LTAs and OX-induced lysis combined with a VraFG/GraRS-dependent increase in cell surface positive charge are accompanied by significantly increased OX resistance in an MRSA pgl mutant.
  •  
3.
  • Bueno, Emilio, et al. (author)
  • Transient glycolytic complexation of arsenate enhances resistance in the enteropathogen Vibrio cholerae
  • 2022
  • In: mBio. - : American Society for Microbiology. - 2161-2129 .- 2150-7511. ; 13:5
  • Journal article (peer-reviewed)abstract
    • The ubiquitous presence of toxic arsenate (AsV) in the environment has raised mechanisms of resistance in all living organisms. Generally, bacterial detoxification of AsV relies on its reduction to arsenite (AsIII) by ArsC, followed by the export of AsIII by ArsB. However, how pathogenic species resist this metalloid remains largely unknown. Here, we found that Vibrio cholerae, the etiologic agent of the diarrheal disease cholera, outcompetes other enteropathogens when grown on millimolar concentrations of AsV. To do so, V. cholerae uses, instead of ArsCB, the AsV-inducible vc1068-1071 operon (renamed var for vibrio arsenate resistance), which encodes the arsenate repressor ArsR, an alternative glyceraldehyde-3-phosphate dehydrogenase, a putative phosphatase, and the AsV transporter ArsJ. In addition to Var, V. cholerae induces oxidative stress-related systems to counter reactive oxygen species (ROS) production caused by intracellular AsV. Characterization of the var mutants suggested that these proteins function independently from one another and play critical roles in preventing deleterious effects on the cell membrane potential and growth derived from the accumulation AsV. Mechanistically, we demonstrate that V. cholerae complexes AsV with the glycolytic intermediate 3-phosphoglycerate into 1-arseno-3-phosphoglycerate (1As3PG). We further show that 1As3PG is not transported outside the cell; instead, it is subsequently dissociated to enable extrusion of free AsV through ArsJ. Collectively, we propose the formation of 1As3PG as a transient metabolic storage of AsV to curb the noxious effect of free AsV. This study advances our understanding of AsV resistance in bacteria and underscores new points of vulnerability that might be an attractive target for antimicrobial interventions. IMPORTANCE Even though resistance to arsenate has been extensively investigated in environmental bacteria, how enteric pathogens tolerate this toxic compound remains unknown. Here, we found that the cholera pathogen V. cholerae exhibits increased resistance to arsenate compared to closely related enteric pathogens. Such resistance is promoted not by ArsC-dependent reduction of arsenate to arsenite but by an operon encoding an arsenate transporter (ArsJ), an alternative glyceraldehyde 3-phosphate dehydrogenase (VarG), and a putative, uncharacterized phosphatase (VarH). Mechanistically, we demonstrate that V. cholerae detoxifies arsenate by complexing it with the glycolytic intermediate 3-phosphoglycerate into 1-arseno-3-phosphoglycerate (1As3PG). 1As3PG is not transported outside the cell; instead, it is subsequently dissociated by VarH to enable extrusion of free arsenate through ArsJ. Collectively, this study proposes a novel mechanism for arsenate detoxification, entirely independent of arsenate reduction and arsenite extrusion, that enhances V. cholerae resistance to this metalloid compared to other enteric pathogens.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view