SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Thongpoo Preeyanuch) "

Search: WFRF:(Thongpoo Preeyanuch)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Stepper, Judith, et al. (author)
  • Structure and activity of the Streptococcus pyogenes family GH1 6-phospho-beta-glucosidase SPy1599
  • 2013
  • In: Acta Crystallographica Section D. - 0907-4449 .- 1399-0047. ; 69, s. 16-23
  • Journal article (peer-reviewed)abstract
    • The group A streptococcus Streptococcus pyogenes is the causative agent of a wide spectrum of invasive infections, including necrotizing fasciitis, scarlet fever and toxic shock syndrome. In the context of its carbohydrate chemistry, it is interesting that S. pyogenes (in this work strain M1 GAS SF370) displays a spectrum of oligosaccharide-processing enzymes that are located in close proximity on the genome but that the in vivo function of these proteins remains unknown. These proteins include different sugar transporters (SPy1593 and SPy1595), both GH125 alpha-1,6- and GH38 alpha-1,3-mannosidases (SPy1603 and SPy1604), a GH84 beta-hexosaminidase (SPy1600) and a putative GH2 beta-galactosidase (SPy1586), as well as SPy1599, a family GH1 'putative beta-glucosidase'. Here, the solution of the three-dimensional structure of SPy1599 in a number of crystal forms complicated by unusual crystallographic twinning is reported. The structure is a classical (beta/alpha)(g)-barrel, consistent with CAZy family GH1 and other members of the GH-A clan. SPy1599 has been annotated in sequence depositions as a beta-glucosidase (EC 3.2.1.21), but no such activity could be found; instead, three-dimensional structural overlaps with other enzymes of known function suggested that SPy1599 contains a phosphate-binding pocket in the active site and has possible 6-phospho-beta-glycosidase activity. Subsequent kinetic analysis indeed showed that SPy1599 has 6-phospho-beta-glucosidase (EC 3.2.1.86) activity. These data suggest that SPy1599 is involved in the intracellular degradation of 6-phosphoglycosides, which are likely to originate from import through one of the organism's many phosphoenolpyruvate phosphotransfer systems (PEP-PTSs).
  •  
2.
  • Thongpoo, Preeyanuch, et al. (author)
  • Identification of the acid/base catalyst of a glycoside hydrolase family 3 (GH3) beta-glucosidase from Aspergillus niger ASKU28
  • 2013
  • In: Biochimica et Biophysica Acta - General Subjects. - : Elsevier BV. - 0304-4165 .- 1872-8006. ; 1830:3, s. 2739-2749
  • Journal article (peer-reviewed)abstract
    • Background: The commercially important glycoside hydrolase family 3 (GH3) beta-glucosidases from Aspergillus niger are anomeric-configuration-retaining enzymes that operate through the canonical double-displacement glycosidase mechanism. Whereas the catalytic nucleophile is readily identified across all GH3 members by sequence alignments, the acid/base catalyst in this family is phylogenetically variable and less readily divined. Methods: In this report, we employed three-dimensional structure homology modeling and detailed kinetic analysis of site-directed mutants to identify the catalytic acid/base of a GH3 beta-glucosidase from A. niger ASKU28. Results: In comparison to the wild-type enzyme and other mutants, the E490A variant exhibited greatly reduced k(cat) and k(cat)/K-m values toward the natural substrate cellobiose (67,000- and 61,000-fold, respectively). Correspondingly smaller kinetic effects were observed for artificial chromogenic substrates p-nitrophenyl beta-D-glucoside and 2,4-dinitrophenyl beta-D-glucoside, the aglycone leaving groups of which are less dependent on add catalysis, although changes in the rate-determining catalytic step were revealed for both, pH-rate profile analyses also implicated E490 as the general acid/base catalyst. Addition of azide as an exogenous nucleophile partially rescued the activity of the E490A variant with the aryl beta-glucosides and yielded beta-glucosyl azide as a product. Conclusions and general significance: These results strongly support the assignment of E490 as the acid/base catalyst in a beta-glucosidase from A. niger ASKU28, and provide crucial experimental support for the bioinformatic identification of the homologous residue in a range of related GH3 subfamily members.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view