SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Tian Geng) "

Search: WFRF:(Tian Geng)

  • Result 1-10 of 35
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Klionsky, Daniel J., et al. (author)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • In: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Research review (peer-reviewed)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
3.
  • Alenkvist, Ida, et al. (author)
  • Absence of Shb impairs insulin secretion by elevated FAK activity in pancreatic islets
  • 2014
  • In: Journal of Endocrinology. - 0022-0795 .- 1479-6805. ; 223:3, s. 267-275
  • Journal article (peer-reviewed)abstract
    • The Src homology-2 domain containing protein B (SHB) has previously been shown to function as a pleiotropic adapter protein, conveying signals from receptor tyrosine kinases to intracellular signaling intermediates. The overexpression of Shb in β-cells promotes β-cell proliferation by increased insulin receptor substrate (IRS) and focal adhesion kinase (FAK) activity, whereas Shb deficiency causes moderate glucose intolerance and impaired first-peak insulin secretion. Using an array of techniques, including live-cell imaging, patch-clamping, immunoblotting, and semi-quantitative PCR, we presently investigated the causes of the abnormal insulin secretory characteristics in Shb-knockout mice. Shb-knockout islets displayed an abnormal signaling signature with increased activities of FAK, IRS, and AKT. β-catenin protein expression was elevated and it showed increased nuclear localization. However, there were no major alterations in the gene expression of various proteins involved in the β-cell secretory machinery. Nor was Shb deficiency associated with changes in glucose-induced ATP generation or cytoplasmic Ca(2) (+) handling. In contrast, the glucose-induced rise in cAMP, known to be important for the insulin secretory response, was delayed in the Shb-knockout compared with WT control. Inhibition of FAK increased the submembrane cAMP concentration, implicating FAK activity in the regulation of insulin exocytosis. In conclusion, Shb deficiency causes a chronic increase in β-cell FAK activity that perturbs the normal insulin secretory characteristics of β-cells, suggesting multi-faceted effects of FAK on insulin secretion depending on the mechanism of FAK activation.
  •  
4.
  • Deng, Tingzhi, et al. (author)
  • Hippocampal Transcriptome-Wide Association Study Reveals Correlations Between Impaired Glutamatergic Synapse Pathway and Age-Related Hearing Loss in BXD-Recombinant Inbred Mice
  • 2021
  • In: Frontiers in Neuroscience. - : Frontiers Media S.A.. - 1662-4548 .- 1662-453X. ; 15
  • Journal article (peer-reviewed)abstract
    • Age-related hearing loss (ARHL) is associated with cognitive dysfunction; however, the detailed underlying mechanisms remain unclear. The aim of this study is to investigate the potential underlying mechanism with a system genetics approach. A transcriptome-wide association study was performed on aged (12-32 months old) BXD mice strains. The hippocampus gene expression was obtained from 56 BXD strains, and the hearing acuity was assessed from 54 BXD strains. Further correlation analysis identified a total of 1,435 hearing-related genes in the hippocampus (p < 0.05). Pathway analysis of these genes indicated that the impaired glutamatergic synapse pathway is involved in ARHL (p = 0.0038). Further gene co-expression analysis showed that the expression level of glutamine synthetase (Gls), which is significantly correlated with ARHL (n = 26, r = -0.46, p = 0.0193), is a crucial regulator in glutamatergic synapse pathway and associated with learning and memory behavior. In this study, we present the first systematic evaluation of hippocampus gene expression pattern associated with ARHL, learning, and memory behavior. Our results provide novel potential molecular mechanisms involved in ARHL and cognitive dysfunction association.
  •  
5.
  • Dyachok, Oleg, 1965-, et al. (author)
  • Glucose-induced cyclic AMP oscillations regulate pulsatile insulin secretion
  • 2008
  • In: Cell Metabolism. - : Cell Press. - 1550-4131 .- 1932-7420. ; 8:1, s. 26-37
  • Journal article (peer-reviewed)abstract
    • Cyclic AMP (cAMP) and Ca2+ are key regulators of exocytosis in many cells, including insulin-secreting β-cells. Glucose-stimulated insulin secretion from β cells is pulsatile and involves oscillations of the cytoplasmic Ca2+ concentration ([Ca2+]i), but little is known about the detailed kinetics of cAMP signalling. Using evanescent-wave fluorescence imaging we found that glucose induces pronounced oscillations of cAMP in the sub-membrane space of single MIN6-cells and primary mouse β-cells. These oscillations were preceded and enhanced by elevations of [Ca2+]i. However, conditions raising cytoplasmic ATP could trigger cAMP elevations without accompanying [Ca2+]i rise, indicating that adenylyl cyclase activity may be controlled also by the substrate concentration. The cAMP oscillations correlated with pulsatile insulin release. Whereas elevation of cAMP enhanced secretion, inhibition of adenylyl cyclases suppressed both cAMP oscillations and pulsatile insulin release. We conclude that cell metabolism directly controls cAMP, and that glucose-induced cAMP oscillations regulate the magnitude and kinetics of insulin exocytosis.
  •  
6.
  • Heras, Gabriel, et al. (author)
  • Muscle RING-finger protein-1 (MuRF1) functions and cellular localization are regulated by SUMO1 post-translational modification
  • 2019
  • In: Journal of Molecular Cell Biology. - : Oxford University Press (OUP). - 1674-2788 .- 1759-4685. ; 11:5, s. 356-370
  • Journal article (peer-reviewed)abstract
    • The muscle RING-finger protein-1 (MuRF1) is an E3 ubiquitin ligase expressed in skeletal and cardiac muscle tissues and it plays important roles in muscle remodeling. Upregulation of MuRF1 gene transcription participates in skeletal muscle atrophy, on contrary downregulation of protein expression leads to cardiac hypertrophy. MuRF1 gene point mutations have been found to generate protein aggregate myopathies defined as muscle disorder characterized by protein accumulation in muscle fibers. We have discovered that MuRF1 turned out to be also a target for a new post-translational modification arbitrated by conjugation of SUMO1 and it is mediated by the SUMO ligases E2 UBC9 and the E3 PIASγ/4. SUMOylation takes place at lysine 238 localized at the second coiled-coil protein domain that is required for efficient substrate interaction for polyubiquitination. We provided evidence that SUMOylation is essential for MuRF1 nuclear translocation and its mitochondria accumulation is enhanced in hyperglycemic conditions delivering a stabilization of the overall SUMOylated proteins in cultured myocytes. Thus, our findings add this SUMO1 post-translational modification as a new concept to understand muscle disorders related to the defect in MuRF1 activity.
  •  
7.
  • Hinke, Simon A., et al. (author)
  • Anchored phosphatases modulate glucose homeostasis
  • 2012
  • In: EMBO Journal. - : Wiley. - 0261-4189 .- 1460-2075. ; 31:20, s. 3991-4004
  • Journal article (peer-reviewed)abstract
    • Endocrine release of insulin principally controls glucose homeostasis. Nutrient-induced exocytosis of insulin granules from pancreatic beta-cells involves ion channels and mobilization of Ca2+ and cyclic AMP (cAMP) signalling pathways. Whole-animal physiology, islet studies and live-beta-cell imaging approaches reveal that ablation of the kinase/phosphatase anchoring protein AKAP150 impairs insulin secretion in mice. Loss of AKAP150 impacts L-type Ca2+ currents, and attenuates cytoplasmic accumulation of Ca2+ and cAMP in beta-cells. Yet surprisingly AKAP150 null animals display improved glucose handling and heightened insulin sensitivity in skeletal muscle. More refined analyses of AKAP150 knock-in mice unable to anchor protein kinase A or protein phosphatase 2B uncover an unexpected observation that tethering of phosphatases to a seven-residue sequence of the anchoring protein is the predominant molecular event underlying these metabolic phenotypes. Thus anchored signalling events that facilitate insulin secretion and glucose homeostasis may be set by AKAP150 associated phosphatase activity.
  •  
8.
  • Hu, R., et al. (author)
  • Biofeedback neuromuscular electrical stimulation front-end for dysphagia treatment
  • 2014
  • In: IEEE 2014 Biomedical Circuits and Systems Conference, BioCAS 2014 - Proceedings. - : IEEE Press. - 9781479923465 ; , s. 612-615
  • Conference paper (peer-reviewed)abstract
    • A dedicated front-end for biofeedback neuromuscular electrical stimulation (NESM) system is proposed. For controllable dysphagia treatment, the integrated circuit (IC) provides a stimulator front-end with programmable stimulation parameters (2μA-1mA current amplitude, DC-2KHz frequency, and variable duty cycle) and an electromyogram/impedance (EMG/ETI) readout front-end with programmable gain and bandwidth (42-80dB, 0.1Hz-1.2KHz) for biofeedback. Area-efficient, low-power but high precision current controlling is achieved by inducing the sigma-delta modulator technique in the stimulation channel. The measured impedance and EMG signal are used to determine the stimulation parameters, enabling a closed loop optimized treatment. The proposed front-end is fabricated in a 0.18 μm standard CMOS process technology and dissipates a peak power of 2.3 mW at the supply voltage of 1.8 V. Measurement results on a live person are also provided to validate the system's effectiveness.
  •  
9.
  • Hu, Wei, et al. (author)
  • Transcriptome-wide association study reveals cholesterol metabolism gene Lpl is a key regulator of cognitive dysfunction
  • 2022
  • In: Frontiers in Molecular Neuroscience. - : Frontiers Media S.A.. - 1662-5099. ; 15
  • Journal article (peer-reviewed)abstract
    • Cholesterol metabolism in the brain plays a crucial role in normal physiological function, and its aberrations are associated with cognitive dysfunction. The present study aimed to determine which cholesterol-related genes play a vital role in cognitive dysfunction and to dissect its underlying molecular mechanisms using a systems genetics approach in the BXD mice family. We first systematically analyzed the association of expression of 280 hippocampal genes related to cholesterol metabolism with cognition-related traits and identified lipoprotein lipase (Lpl) as a critical regulator. This was further confirmed by phenome-wide association studies that indicate Lpl associated with hippocampus volume residuals and anxiety-related traits. By performing expression quantitative trait locus mapping, we demonstrate that Lpl is strongly cis-regulated in the BXD hippocampus. We also identified ∼3,300 genes significantly (p < 0.05) correlated with the Lpl expression. Those genes are mainly involved in the regulation of neuron-related traits through the MAPK signaling pathway, axon guidance, synaptic vesicle cycle, and NF-kappa B signaling pathway. Furthermore, a protein–protein interaction network analysis identified several direct interactors of Lpl, including Rab3a, Akt1, Igf1, Crp, and Lrp1, which indicates that Lpl involves in the regulation of cognitive dysfunction through Rab3a-mediated synaptic vesicle cycle and Akt1/Igf1/Crp/Lrp1-mediated MAPK signaling pathway. Our findings demonstrate the importance of the Lpl, among the cholesterol-related genes, in regulating cognitive dysfunction and highlighting the potential signaling pathways, which may serve as novel therapeutic targets for the treatment of cognitive dysfunction.
  •  
10.
  • Hudson, Thomas J., et al. (author)
  • International network of cancer genome projects
  • 2010
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 464:7291, s. 993-998
  • Journal article (peer-reviewed)abstract
    • The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumours from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of more than 25,000 cancer genomes at the genomic, epigenomic and transcriptomic levels will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically relevant subtypes for prognosis and therapeutic management, and enable the development of new cancer therapies.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 35
Type of publication
journal article (32)
conference paper (1)
doctoral thesis (1)
research review (1)
Type of content
peer-reviewed (31)
other academic/artistic (4)
Author/Editor
Tian, Geng (28)
Mi, Jia (15)
Bergquist, Jonas (12)
Tengholm, Anders (11)
Li, Xuri (5)
Lu, Lu (4)
show more...
Wang, Bin (4)
Xu, Yunjian (3)
Lopez-Otin, Carlos (3)
Wang, Mei (2)
Liu, Yang (2)
Kominami, Eiki (2)
Bonaldo, Paolo (2)
Minucci, Saverio (2)
De Milito, Angelo (2)
Kågedal, Katarina (2)
Liu, Wei (2)
Clarke, Robert (2)
Kumar, Ashok (2)
Brest, Patrick (2)
Simon, Hans-Uwe (2)
Mograbi, Baharia (2)
Chen, Wei (2)
Melino, Gerry (2)
Albert, Matthew L (2)
Welsh, Michael (2)
Liu, Bo (2)
Ghavami, Saeid (2)
Harris, James (2)
Zhang, Hong (2)
Zorzano, Antonio (2)
Bozhkov, Peter (2)
Zhang, Chao (2)
Petersen, Morten (2)
Przyklenk, Karin (2)
Liu, Jian (2)
Noda, Takeshi (2)
Zhao, Ying (2)
Kampinga, Harm H. (2)
Zhang, Lin (2)
Harris, Adrian L. (2)
Hill, Joseph A. (2)
Tannous, Bakhos A (2)
Segura-Aguilar, Juan (2)
Wang, Jing (2)
Dikic, Ivan (2)
Kaminskyy, Vitaliy O ... (2)
Nishino, Ichizo (2)
Yu, Jun (2)
Okamoto, Koji (2)
show less...
University
Uppsala University (28)
Karolinska Institutet (5)
Linköping University (4)
Lund University (4)
Royal Institute of Technology (3)
Swedish University of Agricultural Sciences (2)
show more...
University of Gothenburg (1)
Umeå University (1)
Stockholm University (1)
Blekinge Institute of Technology (1)
show less...
Language
English (35)
Research subject (UKÄ/SCB)
Medical and Health Sciences (22)
Natural sciences (11)
Engineering and Technology (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view