SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Tidemand Frederik Gronbaek) "

Search: WFRF:(Tidemand Frederik Gronbaek)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Luchini, Alessandra, et al. (author)
  • Dark peptide discs for the investigation of membrane proteins in supported lipid bilayers : the case of synaptobrevin 2 (VAMP2)
  • 2022
  • In: Nanoscale Advances. - : Royal Society of Chemistry. - 2516-0230. ; 10:17
  • Journal article (peer-reviewed)abstract
    • Supported lipid bilayers (SLBs) are commonly used as model systems mimicking biological membranes. Recently, we reported a new method to produce SLBs with incorporated membrane proteins, which is based on the application of peptide discs [Luchini et al., Analytical Chemistry, 2020, 92, 1081-1088]. Peptide discs are small discoidal particles composed of a lipid core and an outer belt of self-assembled 18A peptides. SLBs including membrane proteins can be formed by depositing the peptide discs on a solid support and subsequently removing the peptide by buffer rinsing. Here, we introduce a new variant of the 18A peptide, named dark peptide (d18A). d18A exhibits UV absorption at 214 nm, whereas the absorption at 280 nm is negligible. This improves sample preparation as it enables a direct quantification of the membrane protein concentration in the peptide discs by measuring UV absorption at 280 nm. We describe the application of the peptide discs prepared with d18A (dark peptide discs) to produce SLBs with a membrane protein, synaptobrevin 2 (VAMP2). The collected data showed the successful formation of SLBs with high surface coverage and incorporation of VAMP2 in a single orientation with the extramembrane domain exposed towards the bulk solvent. Compared to 18A, we found that d18A was more efficiently removed from the SLB. Our data confirmed the structural organisation of VAMP2 as including both alpha-helical and beta-sheet secondary structure. We further verified the orientation of VAMP2 in the SLBs by characterising the binding of VAMP2 with alpha-synuclein. These results point at the produced SLBs as relevant membrane models for biophysical studies as well as nanostructured biomaterials.
  •  
2.
  • Luchini, Alessandra, et al. (author)
  • Peptide Disc Mediated Control of Membrane Protein Orientation in Supported Lipid Bilayers for Surface-Sensitive Investigations
  • 2020
  • In: Analytical Chemistry. - : American Chemical Society (ACS). - 0003-2700 .- 1520-6882. ; 92:1, s. 1081-1088
  • Journal article (peer-reviewed)abstract
    • In vitro characterization of membrane proteins requires experimental approaches providing mimics of the microenvironment that proteins encounter in native membranes. In this context, supported lipid bilayers provide a suitable platform to investigate membrane proteins by a broad range of surface-sensitive techniques such as neutron reflectometry (NR), quartz crystal microbalance with dissipation monitoring (QCM-D), surface plasmon resonance (SPR), atomic force microscopy (AFM), and fluorescence microscopy. Nevertheless, the successful incorporation of membrane proteins in lipid bilayers with sufficiently high concentration and controlled orientation relative to the bilayer remains challenging. We propose the unconventional use of peptide discs made by phospholipids and amphipathic 18A peptides to mediate the formation of supported phospholipid bilayers with two different types of membrane proteins, CorA and tissue factor (TF). The membrane proteins are reconstituted in peptide discs, deposited on a solid surface, and the peptide molecules are then removed with extensive buffer washes. This leaves a lipid bilayer with a relatively high density of membrane proteins on the support surface. As a very important feature, the strategy allows membrane proteins with one large extramembrane domain to be oriented in the bilayer, thus mimicking the in vivo situation. The method is highly versatile, and we show its general applicability by characterizing with the above-mentioned surface-sensitive techniques two different membrane proteins, which were efficiently loaded in the supported bilayers with similar to 0.6% mol/mol (protein/lipid) concentration corresponding to 35% v/v for CorA and 8% v/v for TF. Altogether, the peptide disc mediated formation of supported lipid bilayers with membrane proteins represents an attractive strategy for producing samples for structural and functional investigations of membrane proteins and for preparation of suitable platforms for drug testing or biosensor development.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view