SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Timashev Peter) "

Search: WFRF:(Timashev Peter)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Xie, Meng, et al. (author)
  • Secondary ossification center induces and protects growth plate structure
  • In: eLIFE. - 2050-084X.
  • Journal article (peer-reviewed)abstract
    • Growth plate and articular cartilage constitute a single anatomical entity, but later separate into two distinct structures by the formation of secondary ossification center (SOC). The reason for such spatial separation remains unknown. Here, we demonstrate that evolutionarily SOC first appears in amniotes. Mathematical modelling reveals that SOC reduces mechanical stress within the growth plate. Analysis of mammals with specialized extremities reveals that SOC size correlates with the extent of mechanical demands. Ex and in vivo experiments demonstrate that SOC allows epiphyseal chondrocytes to withstand a several-fold higher load before activation of the YAP-p73 signalling pathway and caspase-dependent apoptosis, with hypertrophic chondrocytes being the most load-sensitive cells. Atomic force microscopy shows  that hypertrophic chondrocytes are the least mechanically stiff cells within the growth plate. Altogether, these findings suggest that SOC is evolved to protect epiphyseal chondrocytes, especially the hypertrophic chondrocytes, from the high mechanical stress encountered in the terrestrial environment.
  •  
3.
  • Xie, Meng, et al. (author)
  • Secondary ossification center induces and protects growth plate structure
  • 2020
  • In: eLIFE. - : ELIFE SCIENCES PUBLICATIONS LTD. - 2050-084X. ; 9
  • Journal article (peer-reviewed)abstract
    • Growth plate and articular cartilage constitute a single anatomical entity early in development but later separate into two distinct structures by the secondary ossification center (SOC). The reason for such separation remains unknown. We found that evolutionarily SOC appears in animals conquering the land - amniotes. Analysis of the ossification pattern in mammals with specialized extremities (whales, bats, jerboa) revealed that SOC development correlates with the extent of mechanical loads. Mathematical modeling revealed that SOC reduces mechanical stress within the growth plate. Functional experiments revealed the high vulnerability of hypertrophic chondrocytes to mechanical stress and showed that SOC protects these cells from apoptosis caused by extensive loading. Atomic force microscopy showed that hypertrophic chondrocytes are the least mechanically stiff cells within the growth plate. Altogether, these findings suggest that SOC has evolved to protect the hypertrophic chondrocytes from the high mechanical stress encountered in the terrestrial environment.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view