SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Torang A) "

Search: WFRF:(Torang A)

  • Result 1-1 of 1
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Torang, A, et al. (author)
  • Separation of cells and proteins from fermentation broth in a shear-enhanced cross-flow ultrafiltration module as the first step in the refinement of lactic acid
  • 1999
  • In: Applied Biochemistry and Biotechnology. - 1559-0291. ; 76:2, s. 143-157
  • Journal article (peer-reviewed)abstract
    • A shear-enhanced, cross-flow ultrafiltration module was used to separate cells and proteins from the fermentation broth. Three (fermented) media were studied: rich medium, rich medium with hydrolytic enzymes added after fermentation, and wheat flour hydrolysate. To find a membrane with as high a flux as possible, but still capable of separating cells and proteins from the lactic acid containing broth, the performance of three hydrophilic membranes of varying cutoffs (10,000, 20,000, and 30,000) and one hydrophobic membrane (cutoff 25,000) was investigated. The proteins produced by the lactic acid bacteria during fermentation and the hydrolytic proteins were retained by the hydrophilic membrane with a cutoff of 20,000, whereas wheat flour proteins were detected in the permeate. Ln the permeates from the hydrophobic membrane (cutoff 25,000), almost no proteins were detected. The flux of the whole-wheat flour hydrolysate was significantly lower than that of rich medium, for both the hydrophilic and the hydrophobic membranes. The flux was, in all cases, higher for the hydrophilic membrane (12-85 L/[m2.h], depending on which medium was treated) than for the hydrophobic one (8-45 L/[m(2) h]), even though the nominal cutoffs of the hydrophobic and hydrophilic membranes were almost the same. However, the difference in flux was smaller when the whole-wheat flour hydrolysate was processed (12 vs 8 L/[m(2).h]) than when the rich medium was processed (85 vs 45 L/[m(2./)h]). Protein retention was higher for the hydrophobic membrane than for the hydrophilic membrane (cutoff 20,000) owing to blocking of the pores by proteins adsorbed on to the hydrophobic membrane surface.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-1 of 1
Type of publication
journal article (1)
Type of content
peer-reviewed (1)
Author/Editor
Jönsson, Ann-Sofi (1)
Zacchi, Guido (1)
Torang, A (1)
University
Lund University (1)
Language
English (1)
Research subject (UKÄ/SCB)
Natural sciences (1)
Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view