SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Tramberend Sylvia) "

Search: WFRF:(Tramberend Sylvia)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bruckner, Martin, et al. (author)
  • Quantifying the global cropland footprint of the European Union's non-food bioeconomy
  • 2019
  • In: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 14:4
  • Journal article (peer-reviewed)abstract
    • A rapidly growing share of global agricultural areas is devoted to the production of biomass for non-food purposes. The expanding non-food bioeconomy can have far-reaching social and ecological implications; yet, the non-food sector has attained little attention in land footprint studies. This paper provides the first assessment of the global cropland footprint of non-food products of the European Union (EU), a globally important region regarding its expanding bio-based economy. We apply a novel hybrid land flow accounting model, combining the biophysical trade model LANDFLOW with the multi-regional input-output model EXIOBASE. The developed hybrid approach improves the level of product and country detail, while comprehensively covering all global supply chains from agricultural production to final consumption, including highly processed products, such as many non-food products. The results highlight the EU's role as a major processing and the biggest consuming region of cropland-based non-food products, while at the same time relying heavily on imports. Two thirds of the cropland required to satisfy the EU's non-food biomass consumption are located in other world regions, particularly in China, the US and Indonesia, giving rise to potential impacts on distant ecosystems. With almost 39% in 2010, oilseeds used to produce for example biofuels, detergents and polymers represented the dominant share of the EU's non-food cropland demand. Traditional non-food biomass uses, such as fibre crops for textiles and animal hides and skins for leather products, also contributed notably (22%). Our findings suggest that if the EU Bioeconomy Strategy is to support global sustainable development, a detailed monitoring of land use displacement and spillover effects is decisive for targeted and effective EU policy making.
  •  
2.
  • Jonas, Matthias, et al. (author)
  • Sustaining ecosystem services : overcoming the dilemma posed by local actions and planetary boundaries
  • 2014
  • In: Earth's Future. - 2328-4277. ; 2:8, s. 407-420
  • Journal article (peer-reviewed)abstract
    • Resolving challenges related to the sustainability of natural capital and ecosystem services is an urgent issue. No roadmap on reaching sustainability exists; and the kind of sustainable land use required in a world that acknowledges both multiple environmental boundaries and local human well-being presents a quandary. In this commentary, we argue that a new globally consistent and expandable systems-analytical framework is needed to guide and facilitate decision making on sustainability from the planetary to the local level, and vice versa. This framework would strive to link a multitude of Earth system processes and targets; it would give preference to systemic insight over data complexity through being highly explicit in spatiotemporal terms. Its strength would lie in its ability to help scientists uncover and explore potential, and even unexpected, interactions between Earth’s subsystems with planetary environmental boundaries and socioeconomic constraints coming into play. Equally importantly, such a framework would allow countries such as Brazil, a case study in this commentary, to understand domestic or even local sustainability measures within a global perspective and to optimize them accordingly.
  •  
3.
  • Singh, Chandrakant, et al. (author)
  • Landholders leverage over moisture flows and forest resilience in South America
  • Other publication (other academic/artistic)abstract
    • Moisture originating (i.e., evaporation) from the Amazon basin contributes to the rainfall precipitating over the forest and human-influenced land systems in South America. However, the alarming rate of land use change by landholders in the Amazon – mostly due to agricultural expansion – poses serious threats to regional water cycling. On the one hand, this moisture loss over forests reduces their resilience to future hydroclimatic perturbations (e.g., droughts). Loss of moisture over human-influenced land systems, on the other, threatens agricultural yields. However, the leverage these landholders have over the downwind rainfall is uncertain. Understanding their influence will help us realise the potential of land use change impact on the regional water cycle. In this study, we analyse landholders’ leverage over atmospheric moisture flows and the resilience of forest ecosystems in South America. Using remote-sensing datasets and a process-based moisture tracking model, we track moisture flows from different spatial explicit landholder-dominated regions over to the natural and anthropogenic land systems. We find that of all the moisture originating from small (3.0×103 km3 yr-1), medium (0.6×103 km3 yr-1) and large (4.6×103 km3 yr-1) landholders, nearly 43-56% contributes to the rainfall over the forests. Furthermore, nearly 50% of this evaporated moisture originates from the forests within these landholder-dominated regions. We also find that all landholders equally influence the rainfall precipitating over nearby regions (including their own) and those over the downwind remote actors. Among them, smallholders have a disproportionately larger influence over forests’ rainfall (19-39% more than other landholders’). Despite this, large landholders strongly influence forest resilience in South America, along with their disproportionately larger influence over the agricultural land systems (53-116% more than other landholders’). The results from this study emphasise the need for more stringent forest policies to factor in the influence of deforestation on downwind actors and the need for more effective ecosystem stewardship. 
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view