SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Troxler T.) "

Search: WFRF:(Troxler T.)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Oberbauer, S F, et al. (author)
  • Phenological response of tundra plants to background climate variation tested using the International Tundra Experiment.
  • 2013
  • In: Philosophical transactions of the Royal Society of London. Series B, Biological sciences. - : The Royal Society. - 1471-2970. ; 368:1624
  • Journal article (peer-reviewed)abstract
    • The rapidly warming temperatures in high-latitude and alpine regions have the potential to alter the phenology of Arctic and alpine plants, affecting processes ranging from food webs to ecosystem trace gas fluxes. The International Tundra Experiment (ITEX) was initiated in 1990 to evaluate the effects of expected rapid changes in temperature on tundra plant phenology, growth and community changes using experimental warming. Here, we used the ITEX control data to test the phenological responses to background temperature variation across sites spanning latitudinal and moisture gradients. The dataset overall did not show an advance in phenology; instead, temperature variability during the years sampled and an absence of warming at some sites resulted in mixed responses. Phenological transitions of high Arctic plants clearly occurred at lower heat sum thresholds than those of low Arctic and alpine plants. However, sensitivity to temperature change was similar among plants from the different climate zones. Plants of different communities and growth forms differed for some phenological responses. Heat sums associated with flowering and greening appear to have increased over time. These results point to a complex suite of changes in plant communities and ecosystem function in high latitudes and elevations as the climate warms.
  •  
2.
  • Prevey, J., et al. (author)
  • Greater temperature sensitivity of plant phenology at colder sites: implications for convergence across northern latitudes
  • 2017
  • In: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 23:7, s. 2660-2671
  • Journal article (peer-reviewed)abstract
    • Warmer temperatures are accelerating the phenology of organisms around the world. Temperature sensitivity of phenology might be greater in colder, higher latitude sites than in warmer regions, in part because small changes in temperature constitute greater relative changes in thermal balance at colder sites. To test this hypothesis, we examined up to 20 years of phenology data for 47 tundra plant species at 18 high-latitude sites along a climatic gradient. Across all species, the timing of leaf emergence and flowering was more sensitive to a given increase in summer temperature at colder than warmer high-latitude locations. A similar pattern was seen over time for the flowering phenology of a widespread species, Cassiope tetragona. These are among the first results highlighting differential phenological responses of plants across a climatic gradient and suggest the possibility of convergence in flowering times and therefore an increase in gene flow across latitudes as the climate warms.
  •  
3.
  • Prevey, J. S., et al. (author)
  • Warming shortens flowering seasons of tundra plant communities
  • 2019
  • In: Nature Ecology & Evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; 3:1, s. 45-52
  • Journal article (peer-reviewed)abstract
    • Advancing phenology is one of the most visible effects of climate change on plant communities, and has been especially pronounced in temperature-limited tundra ecosystems. However, phenological responses have been shown to differ greatly between species, with some species shifting phenology more than others. We analysed a database of 42,689 tundra plant phenological observations to show that warmer temperatures are leading to a contraction of community-level flowering seasons in tundra ecosystems due to a greater advancement in the flowering times of late-flowering species than early-flowering species. Shorter flowering seasons with a changing climate have the potential to alter trophic interactions in tundra ecosystems. Interestingly, these findings differ from those of warmer ecosystems, where early-flowering species have been found to be more sensitive to temperature change, suggesting that community-level phenological responses to warming can vary greatly between biomes.
  •  
4.
  • Prevéy, Janet S., et al. (author)
  • The tundra phenology database: more than two decades of tundra phenology responses to climate change
  • 2022
  • In: Arctic Science. - : Canadian Science Publishing. - 2368-7460. ; 8:3, s. 1026-1039
  • Journal article (peer-reviewed)abstract
    • Observations of changes in phenology have provided some of the strongest signals of the effects of climate change on terrestrial ecosystems. The International Tundra Experiment (ITEX), initiated in the early 1990s, established a common protocol to measure plant phenology in tundra study areas across the globe. Today, this valuable collec-tion of phenology measurements depicts the responses of plants at the colder extremes of our planet to experimental and ambient changes in temperature over the past decades. The database contains 150 434 phenology observations of 278 plant species taken at 28 study areas for periods of 1–26 years. Here we describe the full data set to increase the visibility and use of these data in global analyses and to invite phenology data contributions from underrepresented tundra locations. Portions of this tundra phenology database have been used in three recent syntheses, some data sets are expanded, others are from entirely new study areas, and the entirety of these data are now available at the Polar Data Catalogue (https://doi.org/10.21963/13215).
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view