SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Tuinenburg Obbe A.) "

Search: WFRF:(Tuinenburg Obbe A.)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Krönke, Jonathan, et al. (author)
  • Dynamics of tipping cascades on complex networks
  • 2020
  • In: Physical review. E. - 2470-0045 .- 2470-0053. ; 101:4
  • Journal article (peer-reviewed)abstract
    • Tipping points occur in diverse systems in various disciplines such as ecology, climate science, economy, and engineering. Tipping points are critical thresholds in system parameters or state variables at which a tiny perturbation can lead to a qualitative change of the system. Many systems with tipping points can be modeled as networks of coupled multistable subsystems, e.g., coupled patches of vegetation, connected lakes, interacting climate tipping elements, and multiscale infrastructure systems. In such networks, tipping events in one subsystem are able to induce tipping cascades via domino effects. Here, we investigate the effects of network topology on the occurrence of such cascades. Numerical cascade simulations with a conceptual dynamical model for tipping points are conducted on Erdos-Renyi, Watts-Strogatz, and Barabasi-Albert networks. Additionally, we generate more realistic networks using data from moisture-recycling simulations of the Amazon rainforest and compare the results to those obtained for the model networks. We furthermore use a directed configuration model and a stochastic block model which preserve certain topological properties of the Amazon network to understand which of these properties are responsible for its increased vulnerability. We find that clustering and spatial organization increase the vulnerability of networks and can lead to tipping of the whole network. These results could be useful to evaluate which systems are vulnerable or robust due to their network topology and might help us to design or manage systems accordingly.
  •  
2.
  • Staal, Arie, et al. (author)
  • Feedback between drought and deforestation in the Amazon
  • 2020
  • In: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 15:4
  • Journal article (peer-reviewed)abstract
    • Deforestation and drought are among the greatest environmental pressures on the Amazon rainforest, possibly destabilizing the forest-climate system. Deforestation in the Amazon reduces rainfall regionally, while this deforestation itself has been reported to be facilitated by droughts. Here we quantify the interactions between drought and deforestation spatially across the Amazon during the early 21st century. First, we relate observed fluctuations in deforestation rates to dry-season intensity; second, we determine the effect of conversion of forest to cropland on evapotranspiration; and third, we simulate the subsequent downwind reductions in rainfall due to decreased atmospheric water input. We find large variability in the response of deforestation to dry-season intensity, with a significant but small average increase in deforestation rates with a more intense dry season: with every mm of water deficit, deforestation tends to increase by 0.13% per year. Deforestation, in turn, has caused an estimated 4% of the recent observed drying, with the south-western part of the Amazon being most strongly affected. Combining both effects, we quantify a reinforcing drought-deforestation feedback that is currently small, but becomes gradually stronger with cumulative deforestation. Our results suggest that global climate change, not deforestation, is the main driver of recent drying in the Amazon. However, a feedback between drought and deforestation implies that increases in either of them will impede efforts to curb both.
  •  
3.
  • Staal, Arie, et al. (author)
  • Hysteresis of tropical forests in the 21st century
  • 2020
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Journal article (peer-reviewed)abstract
    • Tropical forests modify the conditions they depend on through feedbacks at different spatial scales. These feedbacks shape the hysteresis (history-dependence) of tropical forests, thus controlling their resilience to deforestation and response to climate change. Here, we determine the emergent hysteresis from local-scale tipping points and regional-scale forest-rainfall feedbacks across the tropics under the recent climate and a severe climate-change scenario. By integrating remote sensing, a global hydrological model, and detailed atmospheric moisture tracking simulations, we find that forest-rainfall feedback expands the geographic range of possible forest distributions, especially in the Amazon. The Amazon forest could partially recover from complete deforestation, but may lose that resilience later this century. The Congo forest currently lacks resilience, but is predicted to gain it under climate change, whereas forests in Australasia are resilient under both current and future climates. Our results show how tropical forests shape their own distributions and create the climatic conditions that enable them. Tropical rainforests partly create their own climatic conditions by promoting precipitation, therefore rainforest losses may trigger dramatic shifts. Here the authors combine remote sensing, hydrological modelling, and atmospheric moisture tracking simulations to assess forest-rainfall feedbacks in three major tropical rainforest regions on Earth and simulate potential changes under a severe climate change scenario.
  •  
4.
  • Tuinenburg, Obbe A., et al. (author)
  • High-resolution global atmospheric moisture connections from evaporation to precipitation
  • 2020
  • In: Earth System Science Data. - : Copernicus GmbH. - 1866-3508 .- 1866-3516. ; 12:4, s. 3177-3188
  • Journal article (peer-reviewed)abstract
    • A key Earth system process is the circulation of evaporated moisture through the atmosphere. Spatial connections between evaporation and precipitation affect the global and regional climates by redistributing water and latent heat. Through this atmospheric moisture recycling, land cover changes influence regional precipitation patterns, with potentially far-reaching effects on human livelihoods and biome distributions across the globe. However, a globally complete dataset of atmospheric moisture flows from evaporation to precipitation has been lacking so far. Here we present a dataset of global atmospheric moisture recycling on both 0.5 degrees and 1.0 degrees spatial resolution. We simulated the moisture flows between each pair of cells across all land and oceans for 2008-2017 and present their monthly climatological means. We applied the Lagrangian moisture tracking model UTrack, which is forced with ERAS reanalysis data on 25 atmospheric layers and hourly wind speeds and directions. Due to the global coverage of the simulations, a complete picture of both the upwind source areas of precipitation and downwind target areas of evaporation can be obtained. We show a number of statistics of global atmospheric moisture flows: land recycling, basin recycling, mean latitudinal and longitudinal flows, absolute latitudinal and longitudinal flows, and basin recycling for the 26 largest river basins. We find that, on average, 70 % of global land evaporation rains down over land, varying between 62 % and 74 % across the year; 51 % of global land precipitation has evaporated from land, varying between 36 % and 57 % across the year. The highest basin recycling occurs in the Amazon and Congo basins, with evaporation and precipitation recycling of 63 % and 36 % for the Amazon basin and 60 % and 47 % for the Congo basin. These statistics are examples of the potential usage of the dataset, which allows users to identify and quantify the moisture flows from and to any area on Earth, from local to global scales. The dataset is available at https://doi.org/10.1594/PANGAEA.912710 (Tuinenburg et al., 2020).
  •  
5.
  • Tuinenburg, Obbe A., et al. (author)
  • Tracking the global flows of atmospheric moisture and associated uncertainties
  • 2020
  • In: Hydrology and Earth System Sciences. - : Copernicus GmbH. - 1027-5606 .- 1607-7938. ; 24:5, s. 2419-2435
  • Journal article (peer-reviewed)abstract
    • Many processes in hydrology and Earth system science relate to continental moisture recycling, the contribution of terrestrial evaporation to precipitation. For example, the effects of land-cover changes on regional rainfall regimes depend on this process. To study moisture recycling, a range of moisture-tracking models are in use that are forced with output from atmospheric models but differ in various ways. They can be Eulerian (grid-based) or Lagrangian (trajectory-based), have two or three spatial dimensions, and rely on a range of other assumptions. Which model is most suitable depends not only on the purpose of the study but also on the quality and resolution of the data with which it is forced. Recently, the high-resolution ERA5 reanalysis data set has become the state of the art, paving the way for a new generation of moisture-tracking models. However, it is unclear how the new data can best be used to obtain accurate estimates of atmospheric moisture flows. Here we develop a set of moisture-tracking models forced with ERA5 data and systematically test their performance regarding continental evaporation recycling ratio, distances of moisture flows, and footprints of evaporation from seven point sources across the globe. We report simulation times to assess possible trade-offs between accuracy and speed. Three-dimensional Lagrangian models were most accurate and ran faster than Eulerian versions for tracking water from single grid cells. The rate of vertical mixing of moisture in the atmosphere was the greatest source of uncertainty in moisture tracking. We conclude that the recently improved resolution of atmospheric reanalysis data allows for more accurate moisture tracking results in a Lagrangian setting, but that considerable uncertainty regarding turbulent mixing remains. We present an efficient Lagrangian method to track atmospheric moisture flows from any location globally using ERA5 reanalysis data and make the code for this model, which we call UTrack-atmospheric-moisture, publicly available.
  •  
6.
  • Wunderling, Nico, et al. (author)
  • How motifs condition critical thresholds for tipping cascades in complex networks : Linking micro- to macro-scales
  • 2020
  • In: Chaos. - : AIP Publishing. - 1054-1500 .- 1089-7682. ; 30:4
  • Journal article (peer-reviewed)abstract
    • In this study, we investigate how specific micro-interaction structures (motifs) affect the occurrence of tipping cascades on networks of stylized tipping elements. We compare the properties of cascades in Erdos-Renyi networks and an exemplary moisture recycling network of the Amazon rainforest. Within these networks, decisive small-scale motifs are the feed forward loop, the secondary feed forward loop, the zero loop, and the neighboring loop. Of all motifs, the feed forward loop motif stands out in tipping cascades since it decreases the critical coupling strength necessary to initiate a cascade more than the other motifs. We find that for this motif, the reduction of critical coupling strength is 11% less than the critical coupling of a pair of tipping elements. For highly connected networks, our analysis reveals that coupled feed forward loops coincide with a strong 90% decrease in the critical coupling strength. For the highly clustered moisture recycling network in the Amazon, we observe regions of a very high motif occurrence for each of the four investigated motifs, suggesting that these regions are more vulnerable. The occurrence of motifs is found to be one order of magnitude higher than in a random Erdos-Renyi network. This emphasizes the importance of local interaction structures for the emergence of global cascades and the stability of the network as a whole.
  •  
7.
  • Wunderling, Nico, et al. (author)
  • Network motifs shape distinct functioning of Earth's moisture recycling hubs
  • 2022
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13
  • Journal article (peer-reviewed)abstract
    • Earth’s hydrological cycle critically depends on the atmospheric moisture flows connecting evaporation to precipitation. Here we convert a decade of reanalysis-based moisture simulations into a high-resolution global directed network of spatial moisture provisions. We reveal global and local network structures that offer a new view of the global hydrological cycle. We identify four terrestrial moisture recycling hubs: the Amazon Basin, the Congo Rainforest, South Asia and the Indonesian Archipelago. Network motifs reveal contrasting functioning of these regions, where the Amazon strongly relies on directed connections (feed-forward loops) for moisture redistribution and the other hubs on reciprocal moisture connections (zero loops and neighboring loops). We conclude that Earth’s moisture recycling hubs are characterized by specific topologies shaping heterogeneous effects of land-use changes and climatic warming on precipitation patterns.
  •  
8.
  • Wunderling, Nico, et al. (author)
  • Recurrent droughts increase risk of cascading tipping events by outpacing adaptive capacities in the Amazon rainforest
  • 2022
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 119:32
  • Journal article (peer-reviewed)abstract
    • Tipping elements are nonlinear subsystems of the Earth system that have the potential to abruptly shift to another state if environmental change occurs close to a critical threshold with large consequences for human societies and ecosystems. Among these tipping elements may be the Amazon rainforest, which has been undergoing intensive anthropogenic activities and increasingly frequent droughts. Here, we assess how extreme deviations fromclimatological rainfall regimes may cause local forest collapse that cascades through the coupled forest-climate system. We develop a conceptual dynamic network model to isolate and uncover the role of atmospheric moisture recycling in such tipping cascades. We account for heterogeneity in critical thresholds of the forest caused by adaptation to local climatic conditions. Our results reveal that, despite this adaptation, a future climate characterized by permanent drought conditions could trigger a transition to an open canopy state particularly in the southern Amazon.Theloss of atmospheric moisture recycling contributes to one-third of the tipping events.Thus, by exceeding local thresholds in forest adaptive capacity, local climate change impacts may propagate to other regions of the Amazon basin, causing a risk of forest shifts even in regions where critical thresholds have not been crossed locally.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view