SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Turunen S Pauliina) "

Search: WFRF:(Turunen S Pauliina)

  • Result 1-10 of 15
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Alkasalias, Twana, et al. (author)
  • RhoA knockout fibroblasts lose tumor-inhibitory capacity in vitro and promote tumor growth in vivo
  • 2017
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 114:8, s. E1413-E1421
  • Journal article (peer-reviewed)abstract
    • Fibroblasts are a main player in the tumor-inhibitory microenvironment. Upon tumor initiation and progression, fibroblasts can lose their tumor-inhibitory capacity and promote tumor growth. The molecular mechanisms that underlie this switch have not been defined completely. Previously, we identified four proteins over-expressed in cancer-associated fibroblasts and linked to Rho GTPase signaling. Here, we show that knocking out the Ras homolog family member A (RhoA) gene in normal fibroblasts decreased their tumor-inhibitory capacity, as judged by neighbor suppression in vitro and accompanied by promotion of tumor growth in vivo. This also induced PC3 cancer cell motility and increased colony size in 2D cultures. RhoA knockout in fibroblasts induced vimentin intermediate filament reorganization, accompanied by reduced contractile force and increased stiffness of cells. There was also loss of wide F-actin stress fibers and large focal adhesions. In addition, we observed a significant loss of a-smooth muscle actin, which indicates a difference between RhoA knockout fibroblasts and classic cancer-associated fibroblasts. In 3D collagen matrix, RhoA knockout reduced fibroblast branching and meshwork formation and resulted in more compactly clustered tumor-cell colonies in coculture with PC3 cells, which might boost tumor stem-like properties. Coculturing RhoA knockout fibroblasts and PC3 cells induced expression of proinflammatory genes in both. Inflammatory mediators may induce tumor cell stemness. Network enrichment analysis of transcriptomic changes, however, revealed that the Rho signaling pathway per se was significantly triggered only after coculturing with tumor cells. Taken together, our findings in vivo and in vitro indicate that Rho signaling governs the inhibitory effects by fibroblasts on tumor-cell growth.
  •  
2.
  • Le Joncour, Vadim, et al. (author)
  • Vulnerability of invasive glioblastoma cells to lysosomal membrane destabilization.
  • 2019
  • In: EMBO Molecular Medicine. - : EMBO. - 1757-4676 .- 1757-4684. ; 11:6
  • Journal article (peer-reviewed)abstract
    • The current clinical care of glioblastomas leaves behind invasive, radio- and chemo-resistant cells. We recently identified mammary-derived growth inhibitor (MDGI/FABP3) as a biomarker for invasive gliomas. Here, we demonstrate a novel function for MDGI in the maintenance of lysosomal membrane integrity, thus rendering invasive glioma cells unexpectedly vulnerable to lysosomal membrane destabilization. MDGI silencing impaired trafficking of polyunsaturated fatty acids into cells resulting in significant alterations in the lipid composition of lysosomal membranes, and subsequent death of the patient-derived glioma cells via lysosomal membrane permeabilization (LMP). In a preclinical model, treatment of glioma-bearing mice with an antihistaminergic LMP-inducing drug efficiently eradicated invasive glioma cells and secondary tumours within the brain. This unexpected fragility of the aggressive infiltrating cells to LMP provides new opportunities for clinical interventions, such as re-positioning of an established antihistamine drug, to eradicate the inoperable, invasive, and chemo-resistant glioma cells from sustaining disease progression and recurrence.
  •  
3.
  • Kankaanpää, Jari, et al. (author)
  • Cerebrospinal fluid antibodies to oxidized LDL are increased in Alzheimer's disease.
  • 2009
  • In: Neurobiology of Disease. - : Elsevier BV. - 0969-9961 .- 1095-953X. ; 33:3, s. 467-72
  • Journal article (peer-reviewed)abstract
    • Lipoprotein oxidation may play an important role in the pathogenesis of Alzheimer's Disease (AD), and therefore, we investigated cerebrospinal fluid (CSF) antibodies to oxidized low-density lipoprotein (OxLDL) in patients with AD and other neurodegenerative dementias. IgM and IgG antibody titers to OxLDL were measured in 50 CSF samples and 11 plasma samples using chemiluminescent ELISA. All CSF samples contained IgG antibodies, and also most IgM, binding to OxLDL. CSF antibodies to OxLDL were not related to CSF protein or albumin concentrations or plasma antibodies to OxLDL. Competition immunoassay for specificity demonstrated that about 50% of the CSF IgG binding to OxLDL was inhibited by soluble OxLDL. CSF IgG antibodies to OxLDL were significantly increased in AD patients compared to controls and to patients with frontotemporal lobar degeneration. The role of these antibodies in CSF is unknown and further investigations are needed.
  •  
4.
  • Kummu, Outi, et al. (author)
  • Carbamyl adducts on low-density lipoprotein induce IgG response in LDLR-/- mice and bind plasma autoantibodies in humans under enhanced carbamylation.
  • 2013
  • In: Antioxidants and Redox Signaling. - : Mary Ann Liebert Inc. - 1523-0864 .- 1557-7716. ; 19:10, s. 1047-62
  • Journal article (peer-reviewed)abstract
    • AIMS: Post-translational modification of proteins via carbamylation predicts increased risk for coronary artery disease. Uremia and smoke exposure are known to increase carbamylation. The aim was to investigate the role of carbamylated low-density lipoprotein (LDL) immunization on antibody formation and atherogenesis in LDL receptor-deficient (LDLR-/-) mice, and to study autoantibodies to carbamylated proteins in humans with carbamylative load.RESULTS: LDLR-/- mice immunized with carbamylated mouse LDL (msLDL; n=10) without adjuvant showed specific immunoglobulin G (IgG) antibody levels to carbamyl-LDL and malondialdehyde-modified LDL (MDA-LDL) but not to oxidized LDL or native LDL. Immunization did not influence the atherosclerotic plaque area compared with control LDLR-/- mice immunized with native msLDL (n=10) or phosphate-buffered saline (n=11). Humans with high plasma urea levels, as well as smokers, had increased IgG autoantibody levels to carbamyl-modified proteins compared to the subjects with normal plasma urea levels, or to nonsmokers.INNOVATION: Carbamyl-LDL induced specific IgG antibody response cross-reactive with MDA-LDL in mice. IgG antibodies to carbamyl-LDL were also found in human plasma and related to conditions known to have increased carbamylation, such as uremia and smoking. Plasma antibodies to carbamylated proteins may serve as new indicator of in vivo carbamylation.CONCLUSION: These data give insight into mechanisms of in vivo humoral recognition of post-translationally modified structures. Humoral IgG immune response to carbamylated proteins is suggested to play a role in conditions leading to enhanced carbamylation, such as uremia and smoking.
  •  
5.
  • Kummu, Outi, et al. (author)
  • Human monoclonal Fab and human plasma antibodies to carbamyl-epitopes cross-react with malondialdehyde-adducts.
  • 2014
  • In: Immunology. - : Wiley. - 0019-2805 .- 1365-2567. ; 141:3, s. 416-30
  • Journal article (peer-reviewed)abstract
    • Oxidized low-density lipoprotein (OxLDL) plays a crucial role in the development of atherosclerosis. Carbamylated LDL has been suggested to promote atherogenesis in patients with chronic kidney disease. Here we observed that plasma IgG and IgM antibodies to carbamylated epitopes were associated with IgG and IgM antibodies to oxidation-specific epitopes (ρ = 0·65-0·86, P < 0·001) in healthy adults, suggesting a cross-reaction between antibodies recognizing carbamyl-epitopes and malondialdehyde (MDA)/malondialdehyde acetaldehyde (MAA) -adducts. We used a phage display technique to clone a human Fab antibody that bound to carbamylated LDL and other carbamylated proteins. Anti-carbamyl-Fab (Fab106) cross-reacted with oxidation-specific epitopes, especially with MDA-LDL and MAA-LDL. We showed that Fab106 bound to apoptotic Jurkat cells known to contain these oxidation-specific epitopes, and the binding was competed with soluble carbamylated and MDA-/MAA-modified LDL and BSA. In addition, Fab106 was able to block the uptake of carbamyl-LDL and MDA-LDL by macrophages and stained mouse atherosclerotic lesions. The observed cross-reaction between carbamylated and MDA-/MAA-modified LDL and its contribution to enhanced atherogenesis in uraemic patients require further investigation.
  •  
6.
  • Kyrklund, Mikael, et al. (author)
  • Immunization with gingipain A hemagglutinin domain of Porphyromonas gingivalis induces IgM antibodies binding to malondialdehyde-acetaldehyde modified low-density lipoprotein.
  • 2018
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 13:1
  • Journal article (peer-reviewed)abstract
    • Treatment of periodontitis has beneficial effects on systemic inflammation markers that relate to progression of atherosclerosis. We aimed to investigate whether immunization with A hemagglutinin domain (Rgp44) of Porphyromonas gingivalis (Pg), a major etiologic agent of periodontitis, would lead to an antibody response cross-reacting with oxidized low-density lipoprotein (OxLDL) and how it would affect the progression of atherosclerosis in low-density lipoprotein receptor-deficient (LDLR-/-) mice. The data revealed a prominent IgM but not IgG response to malondialdehyde-acetaldehyde modified LDL (MAA-LDL) after Rgp44 and Pg immunizations, implying that Rgp44/Pg and MAA adducts may share cross-reactive epitopes that prompt IgM antibody production and consequently confer atheroprotection. A significant negative association was observed between atherosclerotic lesion and plasma IgA to Rgp44 in Rgp44 immunized mice, supporting further the anti-atherogenic effect of Rgp44 immunization. Plasma IgA levels to Rgp44 and to Pg in both Rgp44- and Pg-immunized mice were significantly higher than those in saline control, suggesting that IgA to Rgp44 could be a surrogate marker of immunization in Pg-immunized mice. Distinct antibody responses in plasma IgA levels to MAA-LDL, to Pg lipopolysaccharides (Pg-LPS), and to phosphocholine (PCho) were observed after Rgp44 and Pg immunizations, indicating that different immunogenic components between Rpg44 and Pg may behave differently in regard of their roles in the development of atherosclerosis. Immunization with Rgp44 also displayed atheroprotective features in modulation of plaque size through association with plasma levels of IL-1α whereas whole Pg bacteria achieved through regulation of anti-inflammatory cytokine levels of IL-5 and IL-10. The present study may contribute to refining therapeutic approaches aiming to modulate immune responses and inflammatory/anti-inflammatory processes in atherosclerosis.
  •  
7.
  • Moyano-Galceran, Lidia, et al. (author)
  • Adaptive RSK-EphA2-GPRC5A signaling switch triggers chemotherapy resistance in ovarian cancer.
  • 2020
  • In: EMBO Molecular Medicine. - : EMBO. - 1757-4676 .- 1757-4684. ; 12:4
  • Journal article (peer-reviewed)abstract
    • Metastatic cancers commonly activate adaptive chemotherapy resistance, attributed to both microenvironment-dependent phenotypic plasticity and genetic characteristics of cancer cells. However, the contribution of chemotherapy itself to the non-genetic resistance mechanisms was long neglected. Using high-grade serous ovarian cancer (HGSC) patient material and cell lines, we describe here an unexpectedly robust cisplatin and carboplatin chemotherapy-induced ERK1/2-RSK1/2-EphA2-GPRC5A signaling switch associated with cancer cell intrinsic and acquired chemoresistance. Mechanistically, pharmacological inhibition or knockdown of RSK1/2 prevented oncogenic EphA2-S897 phosphorylation and EphA2-GPRC5A co-regulation, thereby facilitating a signaling shift to the canonical tumor-suppressive tyrosine phosphorylation and consequent downregulation of EphA2. In combination with platinum, RSK inhibitors effectively sensitized even the most platinum-resistant EphA2high , GPRC5Ahigh cells to the therapy-induced apoptosis. In HGSC patient tumors, this orphan receptor GPRC5A was expressed exclusively in cancer cells and associated with chemotherapy resistance and poor survival. Our results reveal a kinase signaling pathway uniquely activated by platinum to elicit adaptive resistance. They further identify GPRC5A as a marker for abysmal HGSC outcome and putative vulnerability of the chemo-resistant cells to RSK1/2-EphA2-pS897 pathway inhibition.
  •  
8.
  • Thalén, Niklas, et al. (author)
  • Mammalian cell display with automated oligo design and library assembly allows for rapid residue level conformational epitope mapping
  • 2024
  • In: Communications Biology. - : Springer Nature. - 2399-3642. ; 7:1
  • Journal article (peer-reviewed)abstract
    • Precise epitope determination of therapeutic antibodies is of great value as it allows for further comprehension of mechanism of action, therapeutic responsiveness prediction, avoidance of unwanted cross reactivity, and vaccine design. The golden standard for discontinuous epitope determination is the laborious X-ray crystallography method. Here, we present a combinatorial method for rapid mapping of discontinuous epitopes by mammalian antigen display, eliminating the need for protein expression and purification. The method is facilitated by automated workflows and tailored software for antigen analysis and oligonucleotide design. These oligos are used in automated mutagenesis to generate an antigen receptor library displayed on mammalian cells for direct binding analysis by flow cytometry. Through automated analysis of 33930 primers an optimized single condition cloning reaction was defined allowing for mutation of all surface-exposed residues of the receptor binding domain of SARS-CoV-2. All variants were functionally expressed, and two reference binders validated the method. Furthermore, epitopes of three novel therapeutic antibodies were successfully determined followed by evaluation of binding also towards SARS-CoV-2 Omicron BA.2. We find the method to be highly relevant for rapid construction of antigen libraries and determination of antibody epitopes, especially for the development of therapeutic interventions against novel pathogens.
  •  
9.
  • Turunen, S. Pauliina, et al. (author)
  • FGFR4 phosphorylates MST1 to confer breast cancer cells resistance to MST1/2-dependent apoptosis.
  • 2019
  • In: Cell Death and Differentiation. - : Springer Science and Business Media LLC. - 1350-9047 .- 1476-5403.
  • Journal article (peer-reviewed)abstract
    • Cancer cells balance with the equilibrium of cell death and growth to expand and metastasize. The activity of mammalian sterile20-like kinases (MST1/2) has been linked to apoptosis and tumor suppression via YAP/Hippo pathway-independent and -dependent mechanisms. Using a kinase substrate screen, we identified here MST1 and MST2 among the top substrates for fibroblast growth factor receptor 4 (FGFR4). In COS-1 cells, MST1 was phosphorylated at Y433 residue in an FGFR4 kinase activity-dependent manner, as assessed by mass spectrometry. Blockade of this phosphorylation by Y433F mutation induced MST1 activation, as indicated by increased threonine phosphorylation of MST1/2, and the downstream substrate MOB1, in FGFR4-overexpressing T47D and MDA-MB-231 breast cancer cells. Importantly, the specific knockdown or short-term inhibition of FGFR4 in endogenous models of human HER2+ breast cancer cells likewise led to increased MST1/2 activation, in conjunction with enhanced MST1 nuclear localization and generation of N-terminal cleaved and autophosphorylated MST1. Unexpectedly, MST2 was also essential for this MST1/N activation and coincident apoptosis induction, although these two kinases, as well as YAP, were differentially regulated in the breast cancer models analyzed. Moreover, pharmacological FGFR4 inhibition specifically sensitized the HER2+ MDA-MB-453 breast cancer cells, not only to HER2/EGFR and AKT/mTOR inhibitors, but also to clinically relevant apoptosis modulators. In TCGA cohort, FGFR4 overexpression correlated with abysmal HER2+ breast carcinoma patient outcome. Therefore, our results uncover a clinically relevant, targetable mechanism of FGFR4 oncogenic activity via suppression of the stress-associated MST1/2-induced apoptosis machinery in tumor cells with prominent HER/ERBB and FGFR4 signaling-driven proliferation.
  •  
10.
  • Turunen, S. Pauliina, et al. (author)
  • Immunization with malondialdehyde-modified low-density lipoprotein (LDL) reduces atherosclerosis in LDL receptor-deficient mice challenged with Porphyromonas gingivalis
  • 2015
  • In: Innate Immunity. - : SAGE Publications. - 1753-4259 .- 1753-4267. ; 21:4, s. 370-85
  • Journal article (peer-reviewed)abstract
    • Periodontal infections increase the risk of atherosclerotic vascular disease via partly unresolved mechanisms. Of the natural IgM Abs that recognize molecular mimicry on bacterial epitopes and modified lipid and protein structures, IgM directed against oxidized low-density lipoprotein (LDL) is associated with atheroprotective properties. Here, the effect of natural immune responses to malondialdehyde-modified LDL (MDA-LDL) in conferring protection against atherosclerosis, which was accelerated by the major periodontopathogen Porphyromonas gingivalis, was investigated. LDL receptor-deficient (LDLR(-/-)) mice were immunized with mouse MDA-LDL without adjuvant before topical application challenge with live P. gingivalis. Atherosclerosis was analyzed after a high-fat diet, and plasma IgG and IgM Ab levels were measured throughout the study, and the secretion of IL-5, IL-10 and IFN-γ in splenocytes stimulated with MDA-LDL was determined. LDLR(-/-) mice immunized with MDA-LDL had elevated IgM and IgG levels to MDA-LDL compared with saline-treated controls. MDA-LDL immunization diminished aortic lipid depositions after challenge with P. gingivalis compared with mice receiving only P. gingivalis challenge. Immunization of LDLR(-/-) mice with homologous MDA-LDL stimulated the production of IL-5, implicating general activation of B-1 cells. Immune responses to MDA-LDL protected from the P. gingivalis-accelerated atherosclerosis. Thus, the linkage between bacterial infectious burden and atherogenesis is suggested to be modulated via natural IgM directed against cross-reactive epitopes on bacteria and modified LDL.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view