SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ubbink Marcellus) "

Search: WFRF:(Ubbink Marcellus)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bergkvist, Anders, et al. (author)
  • Surface interactions in the complex between cytochrome f and the E43Q/D44N and E59K/E60Q plastocyanin double mutants as determined by (1)H-NMR chemical shift analysis
  • 2001
  • In: Protein Science. - : John Wiley & Sons. - 0961-8368 .- 1469-896X. ; 10:12, s. 2623-2626
  • Journal article (peer-reviewed)abstract
    • A combination of site-directed mutagenesis and NMR chemical shift perturbation analysis of backbone and side-chain protons has been used to characterize the transient complex of the photosynthetic redox proteins plastocyanin and cytochrome f. To elucidate the importance of charged residues on complex formation, the complex of cytochrome f and E43Q/D44N or E59K/E60Q spinach plastocyanin double mutants was studied by full analysis of the (1)H chemical shifts by use of two-dimensional homonuclear NMR spectra. Both mutants show a significant overall decrease in chemical shift perturbations compared with wild-type plastocyanin, in agreement with a large decrease in binding affinity. Qualitatively, the E43Q/D44N mutant showed a similar interaction surface as wild-type plastocyanin. The interaction surface in the E59K/E60Q mutant was distinctly different from wild type. It is concluded that all four charged residues contribute to the affinity and that residues E59 and E60 have an additional role in fine tuning the orientation of the proteins in the complex.
  •  
2.
  • Ejdebäck, Mikael, 1969-, et al. (author)
  • Side-chain interactions in the plastocyanin-cytochrome f complex
  • 2000
  • In: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 39:17, s. 5022-5027
  • Journal article (peer-reviewed)abstract
    • Cytochrome f and plastocyanin are redox partners in the photosynthetic electron-transfer chain. Electron transfer from cytochrome f to plastocyanin occurs in a specific short-lived complex. To obtain detailed information about the binding interface in this transient complex, the effects of binding on the backbone and side-chain protons of plastocyanin have been analyzed by mapping NMR chemical-shift changes. Cytochrome f was added to plastocyanin up to 0.3 M equiv, and the plastocyanin proton chemical shifts were measured. Out of approximately 500 proton resonances, 86% could be observed with this method. Nineteen percent demonstrate significant chemical-shift changes and these protons are located in the hydrophobic patch (including the copper ligands) and the acidic patches of plastocyanin, demonstrating that both areas are part of the interface in the complex. This is consistent with the recently determined structure of the complex [Ubbink, M., Ejdebäck, M., Karlsson, B. G., and Bendall, D. S. (1998) Structure 6, 323-335]. The largest chemical-shift changes are found around His87 in the hydrophobic patch, which indicates tight contacts and possibly water exclusion from this part of the protein interface. These results support the idea that electron transfer occurs via His87 to the copper in plastocyanin and suggest that the hydrophobic patch determines the specificity of the binding. The chemical-shift changes in the acidic patches are significant but small, suggesting that the acidic groups are involved in electrostatic interactions but remain solvent exposed. The existence of small differences between the present data and those used for the structure may imply that the redox state of the metals in both proteins slightly affects the structure of the complex. The chemical-shift mapping is performed on unlabeled proteins, making it an efficient way to analyze effects of mutations on the structure of the complex.
  •  
3.
  • Hiruma, Yoshitaka, et al. (author)
  • Competition between MPS1 and microtubules at kinetochores regulates spindle checkpoint signaling
  • 2015
  • In: Science. - Washington, DC, United States : American Association for the Advancement of Science (A A A S). - 0036-8075 .- 1095-9203. ; 348:6240, s. 1264-1267
  • Journal article (peer-reviewed)abstract
    • Cell division progresses to anaphase only after all chromosomes are connected to spindle microtubules through kinetochores and the spindle assembly checkpoint (SAC) is satisfied. We show that the amino-terminal localization module of the SAC protein kinase MPS1 (monopolar spindle 1) directly interacts with the HEC1 (highly expressed in cancer 1) calponin homology domain in the NDC80 (nuclear division cycle 80) kinetochore complex in vitro, in a phosphorylation-dependent manner. Microtubule polymers disrupted this interaction. In cells, MPS1 binding to kinetochores or to ectopic NDC80 complexes was prevented by end-on microtubule attachment, independent of known kinetochore protein-removal mechanisms. Competition for kinetochore binding between SAC proteins and microtubules provides a direct and perhaps evolutionarily conserved way to detect a properly organized spindle ready for cell division.
  •  
4.
  •  
5.
  • Ubbink, Marcellus, et al. (author)
  • The structure of the complex of plastocyanin and cytochrome f, determined by paramagnetic NMR and restrained rigid-body molecular dynamics
  • 1998
  • In: Structure. - : Elsevier. - 0969-2126 .- 1878-4186. ; 6:3, s. 323-335
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: The reduction of plastocyanin by cytochrome f is part of the chain of photosynthetic electron transfer reactions that links photosystems II and I. The reaction is rapid and is influenced by charged residues on both proteins. Previously determined structures show that the plastocyanin copper and cytochrome f haem redox centres are some distance apart from the relevant charged sidechains, and until now it was unclear how a transient electrostatic complex can be formed that brings the redox centres sufficiently close for a rapid reaction.RESULTS: A new approach was used to determine the structure of the transient complex between cytochrome f and plastocyanin. Diamagnetic chemical shift changes and intermolecular pseudocontact shifts in the NMR spectrum of plastocyanin were used as input in restrained rigid-body molecular dynamics calculations. An ensemble of ten structures was obtained, in which the root mean square deviation of the plastocyanin position relative to cytochrome f is 1.0 A. Electrostatic interaction is maintained at the same time as the hydrophobic side of plastocyanin makes close contact with the haem area, thus providing a short electron transfer pathway (Fe-Cu distance 10.9 A) via residues Tyr1 or Phe4 (cytochrome f) and the copper ligand His87 (plastocyanin).CONCLUSIONS: The combined use of diamagnetic and paramagnetic chemical shift changes makes it possible to obtain detailed information about the structure of a transient complex of redox proteins. The structure suggests that the electrostatic interactions 'guide' the partners into a position that is optimal for electron transfer, and which may be stabilised by short-range interactions.
  •  
6.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view