SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ulevicius Vidmantas) "

Search: WFRF:(Ulevicius Vidmantas)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kecorius, Simonas, et al. (author)
  • Significant increase of aerosol number concentrations in air masses crossing a densely trafficked sea area
  • 2016
  • In: Oceanologia. - : Elsevier BV. - 0078-3234. ; 58:1, s. 1-12
  • Journal article (peer-reviewed)abstract
    • In this study, we evaluated 10 months data (September 2009 to June 2010) of atmospheric aerosol particle number size distribution at three atmospheric observation stations along the Baltic Sea coast: Vavihill (upwind, Sweden), Uto (upwind, Finland), and Preila (downwind, Lithuania). Differences in aerosol particle number size distributions between the upwind and downwind stations during situations of connected atmospheric flow, when the air passed each station, were used to assess the contribution of ship emissions to the aerosol number concentration (diameter interval 50-400 nm) in the Lithuanian background coastal environment. A clear increase in particle number concentration could be noticed, by a factor of 1.9 from Uto to Preila (the average total number concentration at Uto was 791 cm(-3)), and by a factor of 1.6 from Vavihill to Preila (the average total number concentration at Vavihill was 998 cm(-3)). The simultaneous measurements of absorption Angstrom exponents close to unity at Preila supported our conclusion that ship emissions in the Baltic Sea contributed to the increase in particle number concentration at Preila. (C) 2015 Institute of Oceanology of the Polish Academy of Sciences.
  •  
2.
  • Nieminen, Tuomo, et al. (author)
  • Global analysis of continental boundary layer new particle formation based on long-term measurements
  • 2018
  • In: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:19, s. 14737-14756
  • Journal article (peer-reviewed)abstract
    • Atmospheric new particle formation (NPF) is an important phenomenon in terms of global particle number concentrations. Here we investigated the frequency of NPF, formation rates of 10 nm particles, and growth rates in the size range of 10-25 nm using at least 1 year of aerosol number size-distribution observations at 36 different locations around the world. The majority of these measurement sites are in the Northern Hemisphere. We found that the NPF frequency has a strong seasonal variability. At the measurement sites analyzed in this study, NPF occurs most frequently in March-May (on about 30 % of the days) and least frequently in December-February (about 10 % of the days). The median formation rate of 10 nm particles varies by about 3 orders of magnitude (0.01-10 cm(-3) s(-1)) and the growth rate by about an order of magnitude (1-10 nm h(-1)). The smallest values of both formation and growth rates were observed at polar sites and the largest ones in urban environments or anthropogenically influenced rural sites. The correlation between the NPF event frequency and the particle formation and growth rate was at best moderate among the different measurement sites, as well as among the sites belonging to a certain environmental regime. For a better understanding of atmospheric NPF and its regional importance, we would need more observational data from different urban areas in practically all parts of the world, from additional remote and rural locations in North America, Asia, and most of the Southern Hemisphere (especially Australia), from polar areas, and from at least a few locations over the oceans.
  •  
3.
  • Pandolfi, Marco, et al. (author)
  • A European aerosol phenomenology-6 : scattering properties of atmospheric aerosol particles from 28 ACTRIS sites
  • 2018
  • In: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 18:11, s. 7877-7911
  • Journal article (peer-reviewed)abstract
    • This paper presents the light-scattering properties of atmospheric aerosol particles measured over the past decade at 28 ACTRIS observatories, which are located mainly in Europe. The data include particle light scattering (sigma(sp)) and hemispheric backscattering (sigma(bsp)) coefficients, scattering Angstrom exponent (SAE), backscatter fraction (BF) and asymmetry parameter (g). An increasing gradient of sigma(sp) is observed when moving from remote environments (arctic/mountain) to regional and to urban environments. At a regional level in Europe, sigma(sp) also increases when moving from Nordic and Baltic countries and from western Europe to central/eastern Europe, whereas no clear spatial gradient is observed for other station environments. The SAE does not show a clear gradient as a function of the placement of the station. However, a west-to-east-increasing gradient is observed for both regional and mountain placements, suggesting a lower fraction of fine-mode particle in western/south-western Europe compared to central and eastern Europe, where the fine-mode particles dominate the scattering. The g does not show any clear gradient by station placement or geographical location reflecting the complex relationship of this parameter with the physical properties of the aerosol particles. Both the station placement and the geographical location are important factors affecting the intraannual variability. At mountain sites, higher sigma(sp) and SAE values are measured in the summer due to the enhanced boundary layer influence and/or new particle-formation episodes. Conversely, the lower horizontal and vertical dispersion during winter leads to higher sigma(sp) values at all low-altitude sites in central and eastern Europe compared to summer. These sites also show SAE maxima in the summer (with corresponding g minima). At all sites, both SAE and g show a strong variation with aerosol particle loading. The lowest values of g are always observed together with low sigma(sp) values, indicating a larger contribution from particles in the smaller accumulation mode. During periods of high sigma(sp) values, the variation of g is less pronounced, whereas the SAE increases or decreases, suggesting changes mostly in the coarse aerosol particle mode rather than in the fine mode. Statistically significant decreasing trends of sigma(sp) are observed at 5 out of the 13 stations included in the trend analyses. The total reductions of sigma(sp) are consistent with those reported for PM2.5 and PM10 mass concentrations over similar periods across Europe.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view