SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Utterström Johanna) "

Search: WFRF:(Utterström Johanna)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Bengtsson, Torbjörn, 1955-, et al. (author)
  • Plantaricin NC8 αβ exerts potent antimicrobial activity against Staphylococcus spp. and enhances the effects of antibiotics
  • 2020
  • In: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 10:1
  • Journal article (peer-reviewed)abstract
    • The use of conventional antibiotics has substantial clinical efficacy, however these vital antimicrobial agents are becoming less effective due to the dramatic increase in antibiotic-resistant bacteria. Novel approaches to combat bacterial infections are urgently needed and bacteriocins represent a promising alternative. In this study, the activities of the two-peptide bacteriocin PLNC8 αβ were investigated against different Staphylococcus spp. The peptide sequences of PLNC8 α and β were modified, either through truncation or replacement of all L-amino acids with D-amino acids. Both L- and D-PLNC8 αβ caused rapid disruption of lipid membrane integrity and were effective against both susceptible and antibiotic resistant strains. The D-enantiomer was stable against proteolytic degradation by trypsin compared to the L-enantiomer. Of the truncated peptides, β1-22, β7-34 and β1-20 retained an inhibitory activity. The peptides diffused rapidly (2 min) through the bacterial cell wall and permeabilized the cell membrane, causing swelling with a disorganized peptidoglycan layer. Interestingly, sub-MIC concentrations of PLNC8 αβ substantially enhanced the effects of different antibiotics in an additive or synergistic manner. This study shows that PLNC8 αβ is active against Staphylococcus spp. and may be developed as adjuvant in combination therapy to potentiate the effects of antibiotics and reduce their overall use.
  •  
3.
  • Iversen, Alexandra, 1997-, et al. (author)
  • Enzymatically Triggered Peptide–Lipid Conjugation of Designed Membrane Active Peptides for Controlled Liposomal Release
  • 2024
  • In: ACS Omega. - : American Chemical Society. - 2470-1343. ; 9:17, s. 19613-19619
  • Journal article (peer-reviewed)abstract
    • Possibilities for controlling the release of pharmaceuticals from liposomal drug delivery systems can enhance their efficacy and reduce their side effects. Membrane-active peptides (MAPs) can be tailored to promote liposomal release when conjugated to lipid head groups using thiol-maleimide chemistry. However, the rapid oxidation of thiols hampers the optimization of such conjugation-dependent release strategies. Here, we demonstrate a de novo designed MAP modified with an enzyme-labile Cys-protection group (phenylacetamidomethyl (Phacm)) that prevents oxidation and facilitates in situ peptide lipidation. Before deprotection, the peptide lacks a defined secondary structure and does not interact with maleimide-functionalized vesicles. After deprotection of Cys using penicillin G acylase (PGA), the peptide adopts an α-helical conformation and triggers rapid release of vesicle content. Both the peptide and PGA concentrations significantly influence the conjugation process and, consequently, the release kinetics. At a PGA concentration of 5 μM the conjugation and release kinetics closely mirror those of fully reduced, unprotected peptides. We anticipate that these findings will enable further refinement of MAP conjugation and release processes, facilitating the development of sophisticated bioresponsive MAP-based liposomal drug delivery systems.
  •  
4.
  • Utterström, Johanna, et al. (author)
  • Coiled coil-based therapeutics and drug delivery systems
  • 2021
  • In: Advanced Drug Delivery Reviews. - : Elsevier. - 0169-409X .- 1872-8294. ; 170, s. 26-43
  • Research review (peer-reviewed)abstract
    • Coiled coils are characterized by an arrangement of two or more alpha-helices into a superhelix and one of few protein motifs where the sequence-to-structure relationship to a large extent have been decoded and understood. The abundance of both natural and de novo designed coil coils provides a rich molecular toolbox for self assembly of elaborate bespoke molecular architectures, nanostructures, and materials. Leveraging on the numerous possibilities to tune both affinities and preferences for polypeptide oligomerization, coiled coils offer unique possibilities to design modular and dynamic assemblies that can respond in a predictable manner to biomolecular interactions and subtle physicochemical cues. In this review, strategies to use coiled coils in design of novel therapeutics and advanced drug delivery systems are discussed. The applications of coiled coils for generating drug carriers and vaccines, and various aspects of using coiled coils for controlling and triggering drug release, and for improving drug targeting and drug uptake are described. The plethora of innovative coiled coil-based molecular systems provide new knowledge and techniques for improving efficacy of existing drugs and can facilitate development of novel therapeutic strategies. (c) 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/). 1. Introduction 27 2. The coiled coil motif 27 3. Coiled coils and coiled coil-hybrids for drug delivery and therapeutics 30 3.1. Coiled coils in liposome drug delivery systems 30 3.2. Lipidated coiled coils for assembly of virus-like particles 31 3.3. Coiled coil nanoparticles 31 3.4. Coiled coil nanocarriers 33 3.5. Coiled coil polymer-hybrids 33 3.6. Coiled coil-based hydrogels 36 3.7. Coiled coil inorganic nanoparticle hybrids 37 3.8. Coiled coils combined with cell penetrating peptides 37 3.9. Coiled coils for improved targeting 38
  •  
5.
  • Utterström, Johanna, 1993- (author)
  • Design and Optimization of Membrane Active Peptides and Lipid Vesicles for Triggered Release
  • 2024
  • Doctoral thesis (other academic/artistic)abstract
    • Liposomes can reduce toxic side effects and improve the efficacy of drugs and several liposome-based drug formulations are approved for clinical use. The therapeutic effect is dependent on the bioavailability of the drug and a slow drug release from liposomes can reduce their efficacy. Multiple strategies have been proposed to control the release of drugs from liposomes using both external stimuli such as light, heat and ultrasound, and endogenous factors such as changes in pH or enzymatic activity. However, because of the difficulties to efficiently modulate lipid membrane permeability and the challenges to trigger drug release in the target tissue, no stimuli responsive liposomes have so far been approved. There is consequently a great need for new means to tune lipid membrane integrity for liposome cargo release to improve the development of new advanced drug delivery systems for better and safer treatment of patients.  The aim of this thesis was to design and explore synthetic membrane active peptides for triggered release from liposomes and to expand the knowledge on how peptide-lipid conjugation strategies and lipid properties affect the membrane activity of the peptides. This work was based on two different de novo designed cationic and amphipathic, conjugation-dependent membrane active peptides (CKV4 and JR2KC). Both peptides fold and adopt α-helical structures upon conjugation to liposomes, triggering lipid membrane destabilization. Addition of cholesterol in the lipid membrane greatly enhanced the release efficiency of JR2KC due to a peptide-triggered lipid phase separation, resulting in domains with high local peptide concentrations. Additionally, both peptide surface concentrations and lipid net charge were found to be important factors for efficient release. However, when the zeta potential decreased below -75 mV, conjugation-independent release mechanisms were triggered. Liposome size was shown to only have minor effects on the release kinetics for both sets of peptides while a mixture of saturated and unsaturated lipids was beneficial for the peptide-triggered membrane destabilization, possibly due to increased propensity for lipid phase separation.  In addition to changing lipid properties, peptide-lipid conjugation strategies proved to highly affect the release kinetics, where the Michael addition reaction between a cysteine in the peptide and maleimide-lipids was much more efficient in causing peptide-triggered membrane destabilization than strain-promoted alkyne azide cycloaddition reactions using azide-modified peptides and DBCO-functionalized lipids. However, thiols tend to oxidize under ambient conditions which complicates peptide-lipid conjugation. This was addressed by synthesizing a peptide with a cysteine modified with an enzyme labile thiol protection group. Enzymatic deprotection allowed efficient peptide-lipid conjugation, reducing the risk of peptide oxidation.  To further find means to tailor peptide-lipid interactions, we explored the effect of a competing peptide heterodimerization process on lipid membrane destabilization. Addition of a charge complementary peptide to CKV4 resulted in heterodimerization and folding into a coiled coil, which inhibited its membrane activity. However, when the two peptides were synthesized as a single sequence, the membrane activity was altered, most likely due to the induced preorganization increasing membrane affinity. The results presented in this thesis provide new understandings of the complex peptide-lipid interactions that govern peptide-induced release from liposomes and will facilitate further optimization in peptide design for the future development of advanced liposome-based drug delivery systems. 
  •  
6.
  • Utterström, Johanna, et al. (author)
  • Peptide-Folding Triggered Phase Separation and Lipid Membrane Destabilization in Cholesterol-Rich Lipid Vesicles
  • 2022
  • In: Bioconjugate chemistry. - : AMER CHEMICAL SOC. - 1043-1802 .- 1520-4812. ; 33:4, s. 736-746
  • Journal article (peer-reviewed)abstract
    • Liposome-based drug delivery systems are widely used to improve drug pharmacokinetics but can suffer from slow and unspecific release of encapsulated drugs. Membrane-active peptides, based on sequences derived or inspired from antimicrobial peptides (AMPs), could offer means to trigger and control the release. Cholesterol is used in most liposomal drug delivery systems (DDS) to improve the stability of the formulation, but the activity of AMPs on cholesterol-rich membranes tends to be very low, complicating peptide-triggered release strategies. Here, we show a de novo designed AMP-mimetic peptide that efficiently triggers content release from cholesterol-containing lipid vesicles when covalently conjugated to headgroup-functionalized lipids. Binding to vesicles induces peptide folding and triggers a lipid phase separation, which in the presence of cholesterol results in high local peptide concentrations at the lipid bilayer surface and rapid content release. We anticipate that these results will facilitate the development of peptide-based strategies for controlling and triggering drug release from liposomal drug delivery systems.
  •  
7.
  • Zeng, Shuangshuang, et al. (author)
  • Mechanism and kinetics of lipid bilayer formation in solid-state nanopores
  • 2020
  • In: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 36:6, s. 1446-1453
  • Journal article (peer-reviewed)abstract
    • Solid-state nanopores provide a highly versatile platform for rapid electrical detection and analysis of single molecules. Lipid bilayer coating of the nanopores can reduce nonspecific analyte adsorption to the nanopore sidewalls and increase the sensing selectivity by providing possibilities for tethering specific ligands in a cell-membrane mimicking environment. However, the mechanism and kinetics of lipid bilayer formation from vesicles remain unclear in the presence of nanopores. In this work, we used a silicon-based, truncated pyramidal nanopore array as the support for lipid bilayer formation. Lipid bilayer formation in the nanopores was monitored in real time by the change in ionic current through the nanopores. Statistical analysis revealed that a lipid bilayer is formed from the instantaneous rupture of individual vesicle upon adsorption in the nanopores, differing from the generally agreed mechanism that lipid bilayer forms at a high vesicle surface coverage on a planar support. The dependence of the lipid bilayer formation process on the applied bias, vesicle size, and concentration was systematically studied. In addition, the nonfouling properties of the lipid bilayer coated nanopores were demonstrated during long single-stranded DNA translocation through the nanopore array. The findings indicate that the lipid bilayer formation process can be modulated by introducing nanocavities intentionally on the planar surface to create active sites or changing the vesicle size and concentration.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view