SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Van Hoof V) "

Search: WFRF:(Van Hoof V)

  • Result 1-10 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aad, G., et al. (author)
  • 2013
  • In: Journal of High Energy Physics. - 1029-8479 .- 1126-6708. ; :2
  • Journal article (peer-reviewed)
  •  
2.
  • Aad, G., et al. (author)
  • 2012
  • In: Nuclear Physics, Section B. - : Elsevier BV. - 0550-3213 .- 1873-1562. ; 864:3, s. 341-381
  • Journal article (peer-reviewed)
  •  
3.
  •  
4.
  • Forrest, ARR, et al. (author)
  • A promoter-level mammalian expression atlas
  • 2014
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 507:7493, s. 462-
  • Journal article (peer-reviewed)
  •  
5.
  •  
6.
  • Matsuura, M., et al. (author)
  • A STUBBORNLY LARGE MASS OF COLD DUST IN THE EJECTA OF SUPERNOVA 1987A
  • 2015
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 800:1
  • Journal article (peer-reviewed)abstract
    • We present new Herschel photometric and spectroscopic observations of Supernova 1987A, carried out in 2012. Our dedicated photometric measurements provide new 70 mu m data and improved imaging quality at 100 and 160 mu m compared to previous observations in 2010. Our Herschel spectra show only weak CO line emission, and provide an upper limit for the 63 mu m [O-I] line flux, eliminating the possibility that line contaminations distort the previously estimated dustmass. The far-infrared spectral energy distribution (SED) is well fitted by thermal emission from cold dust. The newly measured 70 mu m flux constrains the dust temperature, limiting it to nearly a single temperature. The far-infrared emission can be fitted by 0.5 +/- 0.1M(circle dot) of amorphous carbon, about a factor of two larger than the current nucleosynthetic mass prediction for carbon. The observation of SiO molecules at early and late phases suggests that silicates may also have formed and we could fit the SED with a combination of 0.3M(circle dot) of amorphous carbon and 0.5M(circle dot) of silicates, totalling 0.8M(circle dot) of dust. Our analysis thus supports the presence of a large dust reservoir in the ejecta of SN 1987A. The inferred dust mass suggests that supernovae can be an important source of dust in the interstellar medium, from local to high-redshift galaxies.
  •  
7.
  • Meixner, Margaret, et al. (author)
  • Herschel and ALMA measurements of dust and molecules in supernova 1987A
  • 2013
  • In: Proceedings of Science. - 1824-8039. ; Part F113823
  • Conference paper (peer-reviewed)abstract
    • Dust production by supernovae is important in the dust life cycle of a galaxy. The explosion of SN 1987A was the nearest SN detected in the last 400 years, allowing us detailed studies of contemporary evolution of a supernova for the first time. In 2011, Matsuura et al. reported 0.4-0.7 M of dust in SN 1987A based on Herschel HERITAGE survey data, which is surprisingly large compared to prior measurements of supernovae. In this paper, we present our follow-up studies of this important discovery about SN 1987A using the Herschel Space Observatory and the Atacama Large Millimeter Array (ALMA). We highlight two important results, the detection of cold molecular gas and dust in the ejected material of SN 1987A. Our results suggest that SNe are significant producers of dust and molecules, as well as heavy elements, driving chemical evolution of galaxies.
  •  
8.
  • van Hoof, P. A. M., et al. (author)
  • Herschel images of NGC 6720 : H-2 formation on dust grains
  • 2010
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L137-
  • Journal article (peer-reviewed)abstract
    • Herschel PACS and SPIRE images have been obtained of NGC 6720 (the Ring nebula). This is an evolved planetary nebula with a central star that is currently on the cooling track, due to which the outer parts of the nebula are recombining. From the PACS and SPIRE images we conclude that there is a striking resemblance between the dust distribution and the H-2 emission, which appears to be observational evidence that H-2 forms on grain surfaces. We have developed a photoionization model of the nebula with the Cloudy code which we used to determine the physical conditions of the dust and investigate possible formation scenarios for the H-2. We conclude that the most plausible scenario is that the H-2 resides in high density knots which were formed after the recombination of the gas started when the central star entered the cooling track. Hydrodynamical instabilities due to the unusually low temperature of the recombining gas are proposed as a mechanism for forming the knots. H-2 formation in the knots is expected to be substantial after the central star underwent a strong drop in luminosity about one to two thousand years ago, and may still be ongoing at this moment, depending on the density of the knots and the properties of the grains in the knots.
  •  
9.
  • Röllig, M., et al. (author)
  • A photon dominated region code comparison study
  • 2007
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 467:No. 1 (May III 2007), s. 187-206
  • Journal article (peer-reviewed)abstract
    • Aims.We present a comparison between independent computer codes, modeling the physics and chemistry of interstellar photon dominated regions (PDRs). Our goal was to understand the mutual differences in the PDR codes and their effects on the physical and chemical structure of the model clouds, and to converge the output of different codes to a common solution.Methods. A number of benchmark models have been created, covering low and high gas densities n = 103,105.5 cm-3 and far ultraviolet intensities $\chi$ = 10, 105 in units of the Draine field (FUV: 6
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view