SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Varasteh Zohreh) "

Search: WFRF:(Varasteh Zohreh)

  • Result 1-10 of 38
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Altai, Mohamed, et al. (author)
  • 188Re-ZHER2:V2, a promising affibody-based targeting agent against HER2-expressing tumors : preclinical assessment
  • 2014
  • In: Journal of nuclear medicine : official publication, Society of Nuclear Medicine. - : Society of Nuclear Medicine. - 0161-5505 .- 1535-5667 .- 2159-662X. ; 55:11, s. 8-1842
  • Journal article (peer-reviewed)abstract
    • UNLABELLED: Affibody molecules are small (7 kDa) nonimmunoglobulin scaffold proteins with favorable tumor-targeting properties. Studies concerning the influence of chelators on biodistribution of (99m)Tc-labeled Affibody molecules demonstrated that the variant with a C-terminal glycyl-glycyl-glycyl-cysteine peptide-based chelator (designated ZHER2:V2) has the best biodistribution profile in vivo and the lowest renal retention of radioactivity. The aim of this study was to evaluate (188)Re-ZHER2:V2 as a potential candidate for radionuclide therapy of human epidermal growth factor receptor type 2 (HER2)-expressing tumors.METHODS: ZHER2:V2 was labeled with (188)Re using a gluconate-containing kit. Targeting of HER2-overexpressing SKOV-3 ovarian carcinoma xenografts in nude mice was studied for a dosimetry assessment.RESULTS: Binding of (188)Re-ZHER2:V2 to living SKOV-3 cells was demonstrated to be specific, with an affinity of 6.4 ± 0.4 pM. The biodistribution study showed a rapid blood clearance (1.4 ± 0.1 percentage injected activity per gram [%ID/g] at 1 h after injection). The tumor uptake was 14 ± 2, 12 ± 2, 5 ± 2, and 1.8 ± 0.5 %IA/g at 1, 4, 24, and 48 h after injection, respectively. The in vivo targeting of HER2-expressing xenografts was specific. Already at 4 h after injection, tumor uptake exceeded kidney uptake (2.1 ± 0.2 %IA/g). Scintillation-camera imaging showed that tumor xenografts were the only sites with prominent accumulation of radioactivity at 4 h after injection. Based on the biokinetics, a dosimetry evaluation for humans suggests that (188)Re-ZHER2:V2 would provide an absorbed dose to tumor of 79 Gy without exceeding absorbed doses of 23 Gy to kidneys and 2 Gy to bone marrow. This indicates that future human radiotherapy studies may be feasible.CONCLUSION: (188)Re-ZHER2:V2 can deliver high absorbed doses to tumors without exceeding kidney and bone marrow toxicity limits.
  •  
2.
  • Altai, Mohamed, et al. (author)
  • In Vivo and In Vitro Studies on Renal Uptake of Radiolabeled Affibody Molecules for Imaging of HER2 Expression in Tumors
  • 2013
  • In: Cancer Biotherapy and Radiopharmaceuticals. - : Mary Ann Liebert Inc. - 1084-9785 .- 1557-8852. ; 28:3, s. 187-195
  • Journal article (peer-reviewed)abstract
    • Affibody molecules (6-7 kDa) are a new class of small robust three-helical scaffold proteins. Radiolabeled subnanomolar anti-HER2 affibody Z(HER2:342) was developed for imaging of HER2 expression in tumors, and a clinical study has demonstrated that the In-111- and Ga-68-labeled affibody molecules can efficiently detect HER2 expressing metastases in breast cancer patients. However, a significant renal accumulation of radioactivity after systemic injection of a radiolabeled anti-HER2 affibody conjugate is observed. The aim of this study was to investigate the mechanism of renal reabsorption of anti-HER2 affibody at the molecular level. Renal accumulation of radiolabeled anti-HER2 affibody molecules was studied in a murine model and in vitro using opossum-derived proximal tubule (OK) cells. It was found that kidney reabsorption of affibody molecule was not driven by megalin/cubilin. Amino acids in the target-binding side of affibody molecule were involved in binding to OK cells. On OK cells, two types of receptors for anti-HER2 affibody molecule were found: K-D1 = 0.8 nM, B-max1 = 71,500 and K-D2 = 9.2 nM, B-max2 = 367,000. The results of the present study indicate that affibody molecule and other scaffold-based targeting proteins with a relatively low kidney uptake can be selected using in vitro studies with tubular kidney cells.
  •  
3.
  • Altai, Mohamed, et al. (author)
  • Selection of an optimal cysteine-containing peptide-based chelator for labeling of affibody molecules with (188)Re.
  • 2014
  • In: European Journal of Medicinal Chemistry. - : Elsevier BV. - 0223-5234 .- 1768-3254. ; 87, s. 519-28
  • Journal article (peer-reviewed)abstract
    • Affibody molecules constitute a class of small (7 kDa) scaffold proteins that can be engineered to have excellent tumor targeting properties. High reabsorption in kidneys complicates development of affibody molecules for radionuclide therapy. In this study, we evaluated the influence of the composition of cysteine-containing C-terminal peptide-based chelators on the biodistribution and renal retention of (188)Re-labeled anti-HER2 affibody molecules. Biodistribution of affibody molecules containing GGXC or GXGC peptide chelators (where X is G, S, E or K) was compared with biodistribution of a parental affibody molecule ZHER2:2395 having a KVDC peptide chelator. All constructs retained low picomolar affinity to HER2-expressing cells after labeling. The biodistribution of all (188)Re-labeled affibody molecules was in general comparable, with the main observed difference found in the uptake and retention of radioactivity in excretory organs. The (188)Re-ZHER2:V2 affibody molecule with a GGGC chelator provided the lowest uptake in all organs and tissues. The renal retention of (188)Re-ZHER2:V2 (3.1 ± 0.5 %ID/g at 4 h after injection) was 55-fold lower than retention of the parental (188)Re-ZHER2:2395 (172 ± 32 %ID/g). We show that engineering of cysteine-containing peptide-based chelators can be used for significant improvement of biodistribution of (188)Re-labeled scaffold proteins, particularly reduction of their uptake in excretory organs.
  •  
4.
  • Altai, Mohamed, et al. (author)
  • Selection of an optimal cysteine-containing peptide-based chelator for labeling of Affibody molecules with 188-Re
  • 2013
  • In: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 40:Suppl. 2, s. S219-S220
  • Journal article (other academic/artistic)abstract
    • Affibody molecules constitute a class of small (7 kDa) scaffold proteins that can be engineered to have excellent tumor targeting properties. High reabsorption in kidneys complicates development of affibody molecules for radionuclide therapy. In this study, we evaluated the influence of the composition of cysteine-containing C-terminal peptide-based chelators on the biodistribution and renal retention of 188Re-labeled anti-HER2 affibody molecules. Biodistribution of affibody molecules containing GGXC or GXGC peptide chelators (where X is G, S, E or K) was compared with biodistribution of a parental affibody molecule ZHER2:2395 having a KVDC peptide chelator. All constructs retained low picomolar affinity to HER2-expressing cells after labeling. The biodistribution of all 188Re-labeled affibody molecules was in general comparable, with the main observed difference found in the uptake and retention of radioactivity in excretory organs. The 188Re-ZHER2:V2 affibody molecule with a GGGC chelator provided the lowest uptake in all organs and tissues. The renal retention of 188Re-ZHER2:V2 (3.1±0.5 %ID/g at 4 h after injection) was 55-fold lower than retention of the parental 188Re-ZHER2:2395 (172±32 %ID/g). We show that engineering of cysteine-containing peptide-based chelators can be used for significant improvement of biodistribution of 188Re-labeled scaffold proteins, particularly reduction of their uptake in excretory organs.
  •  
5.
  •  
6.
  • Andersson, Ken G, et al. (author)
  • Comparative evaluation of 111In-labeled NOTA‑conjugated affibody molecules for visualization of HER3 expression in malignant tumors
  • 2015
  • In: Oncology Reports. - : Spandidos Publications. - 1021-335X .- 1791-2431. ; 34:2, s. 1042-8
  • Journal article (peer-reviewed)abstract
    • Expression of human epidermal growth factor receptor type 3 (HER3) in malignant tumors has been associated with resistance to a variety of anticancer therapies. Several anti-HER3 monoclonal antibodies are currently under pre-clinical and clinical development aiming to overcome HER3-mediated resistance. Radionuclide molecular imaging of HER3 expression may improve treatment by allowing the selection of suitable patients for HER3-targeted therapy. Affibody molecules are a class of small (7kDa) high-affinity targeting proteins with appreciable potential as molecular imaging probes. In a recent study, we selected affibody molecules with affinity to HER3 at a low picomolar range. The aim of the present study was to develop an anti-HER3 affibody molecule suitable for labeling with radiometals. The HEHEHE-Z08698-NOTA and HEHEHE-Z08699-NOTA HER3-specific affibody molecules were labeled with indium‑111 (111In) and assessed invitro and invivo for imaging properties using single photon emission computed tomography (SPECT). Labeling of HEHEHE-Z08698-NOTA and HEHEHE-Z08699-NOTA with 111In provided stable conjugates. Invitro cell tests demonstrated specific binding of the two conjugates to HER3-expressing BT‑474 breast carcinoma cells. In mice bearing BT‑474 xenografts, the tumor uptake of the two conjugates was receptor‑specific. Direct invivo comparison of 111In-HEHEHE-Z08698-NOTA and 111In-HEHEHE-Z08699‑NOTA demonstrated that the two conjugates provided equal radioactivity uptake in tumors, although the tumor-to-blood ratio was improved for 111In-HEHEHE-Z08698-NOTA [12±3 vs. 8±1, 4h post injection (p.i.)] due to more efficient blood clearance. 111In-HEHEHE-Z08698-NOTA is a promising candidate for imaging of HER3-expression in malignant tumors using SPECT. Results of the present study indicate that this conjugate could be used for patient stratification for anti-HER3 therapy.
  •  
7.
  • Lundmark, Fanny, et al. (author)
  • Heterodimeric Radiotracer Targeting PSMA and GRPR for Imaging of Prostate Cancer-Optimization of the Affinity towards PSMA by Linker Modification in Murine Model
  • 2020
  • In: Pharmaceutics. - : MDPI. - 1999-4923. ; 12:7
  • Journal article (peer-reviewed)abstract
    • Prostate-specific membrane antigen (PSMA) and gastrin-releasing peptide receptor (GRPR) are promising targets for molecular imaging of prostate cancer (PCa) lesions. Due to the heterogenic overexpression of PSMA and GRPR in PCa, a heterodimeric radiotracer with the ability to bind to both targets could be beneficial. Recently, our group reported the novel heterodimer BQ7800 consisting of a urea-based PSMA inhibitor, the peptide-based GRPR antagonist RM26 and NOTA chelator. The study reported herein, aimed to improve the affinity of BQ7800 towards PSMA by changing the composition of the two linkers connecting the PSMA- and GRPR-targeting motifs. Three novel heterodimeric analogues were synthesized by incorporation of phenylalanine in the functional linker of the PSMA-binding motif and/or shortening the PEG-linker coupled to RM26. The heterodimers were labeled with indium-111 and evaluated in vitro. In the competitive binding assay, BQ7812, featuring phenylalanine and shorter PEG-linker, demonstrated a nine-fold improved affinity towards PSMA. In the in vivo biodistribution study of [In-111]In-BQ7812 in PC3-pip tumor-bearing mice (PSMA and GRPR positive), the activity uptake was two-fold higher in the tumor and three-fold higher in kidneys than for [In-111]In-BQ7800. Herein, we showed that the affinity of a bispecific PSMA/GRPR heterodimer towards PSMA could be improved by linker modification.
  •  
8.
  • Malm, Magdalena, 1983-, et al. (author)
  • Inhibiting HER3-Mediated Tumor Cell Growth with Affibody Molecules Engineered to Low Picomolar Affinity by Position-Directed Error-Prone PCR-Like Diversification
  • 2013
  • In: PLOS ONE. - : Public Library Science, USA. - 1932-6203. ; 8:5, s. e62791-
  • Journal article (peer-reviewed)abstract
    • The HER3 receptor is implicated in the progression of various cancers as well as in resistance to several currently used drugs, and is hence a potential target for development of new therapies. We have previously generated Affibody molecules that inhibit heregulin-induced signaling of the HER3 pathways. The aim of this study was to improve the affinity of the binders to hopefully increase receptor inhibition efficacy and enable a high receptor-mediated uptake in tumors. We explored a novel strategy for affinity maturation of Affibody molecules that is based on alanine scanning followed by design of library diversification to mimic the result from an error-prone PCR reaction, but with full control over mutated positions and thus less biases. Using bacterial surface display and flow-cytometric sorting of the maturation library, the affinity for HER3 was improved more than 30-fold down to 21 PM. The affinity is among the higher that has been reported for Affibody molecules and we believe that the maturation strategy should be generally applicable for improvement of affinity proteins. The new binders also demonstrated an improved thermal stability as well as complete refolding after denaturation. Moreover, inhibition of ligand-induced proliferation of HER3-positive breast cancer cells was improved more than two orders of magnitude compared to the previously best-performing clone. Radiolabeled Affibody molecules showed specific targeting of a number of HER3-positive cell lines in vitro as well as targeting of HER3 in in vivo mouse models and represent promising candidates for future development of targeted therapies and diagnostics.
  •  
9.
  • Malmberg, Jennie, et al. (author)
  • Comparative evaluation of synthetic anti-HER2 Affibody molecules site-specifically labelled with 111In using N-terminal DOTA, NOTA and NODAGA chelators in mice bearing prostate cancer xenografts.
  • 2012
  • In: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 39:3, s. 481-492
  • Journal article (peer-reviewed)abstract
    • PURPOSE: In disseminated prostate cancer, expression of human epidermal growth factor receptor type 2 (HER2) is one of the pathways to androgen independence. Radionuclide molecular imaging of HER2 expression in disseminated prostate cancer might identify patients for HER2-targeted therapy. Affibody molecules are small (7 kDa) targeting proteins with high potential as tracers for radionuclide imaging. The goal of this study was to develop an optimal Affibody-based tracer for visualization of HER2 expression in prostate cancer. METHODS: A synthetic variant of the anti-HER2 Z(HER2:342) Affibody molecule, Z(HER2:S1), was N-terminally conjugated with the chelators DOTA, NOTA and NODAGA. The conjugated proteins were biophysically characterized by electrospray ionization mass spectroscopy (ESI-MS), circular dichroism (CD) spectroscopy and surface plasmon resonance (SPR)-based biosensor analysis. After labelling with (111)In, the biodistribution was assessed in normal mice and the two most promising conjugates were further evaluated for tumour targeting in mice bearing DU-145 prostate cancer xenografts. RESULTS: The HER2-binding equilibrium dissociation constants were 130, 140 and 90 pM for DOTA-Z(HER2:S1), NOTA-Z(HER2:S1) and NODAGA-Z(HER2:S1), respectively. A comparative study of (111)In-labelled DOTA-Z(HER2:S1), NOTA-Z(HER2:S1) and NODAGA-Z(HER2:S1) in normal mice demonstrated a substantial influence of the chelators on the biodistribution properties of the conjugates. (111)In-NODAGA-Z(HER2:S1) had the most rapid clearance from blood and healthy tissues. (111)In-NOTA-Z(HER2:S1) showed high hepatic uptake and was excluded from further evaluation. (111)In-DOTA-Z(HER2:S1) and (111)In-NODAGA-Z(HER2:S1) demonstrated specific uptake in DU-145 prostate cancer xenografts in nude mice. The tumour uptake of (111)In-NODAGA-Z(HER2:S1), 5.6 ± 0.4%ID/g, was significantly lower than the uptake of (111)In-DOTA-Z(HER2:S1), 7.4 ± 0.5%ID/g, presumably because of lower bioavailability due to more rapid clearance. (111)In-NODAGA-Z(HER2:S1) provided higher tumour-to-blood ratio, but somewhat lower tumour-to-liver, tumour-to-spleen and tumour-to-bone ratios. CONCLUSION: Since distant prostate cancer metastases are situated in bone or bone marrow, the higher tumour-to-bone ratio is the most important. This renders (111)In-DOTA-Z(HER2:S1) a preferable agent for imaging of HER2 expression in disseminated prostate cancer.
  •  
10.
  • Malmberg, Jennie, et al. (author)
  • Comparative evaluation of synthetic anti-HER2 Affibody molecules site-specifically labelled with In-111 using N-terminal DOTA, NOTA and NODAGA chelators in mice bearing prostate cancer xenografts
  • 2012
  • In: European Journal of Nuclear Medicine and Molecular Imaging. - : Springer Science and Business Media LLC. - 1619-7070 .- 1619-7089. ; 39:3, s. 481-492
  • Journal article (peer-reviewed)abstract
    • Purpose In disseminated prostate cancer, expression of human epidermal growth factor receptor type 2 (HER2) is one of the pathways to androgen independence. Radionuclide molecular imaging of HER2 expression in disseminated prostate cancer might identify patients for HER2-targeted therapy. Affibody molecules are small (7 kDa) targeting proteins with high potential as tracers for radionuclide imaging. The goal of this study was to develop an optimal Affibody-based tracer for visualization of HER2 expression in prostate cancer. Methods A synthetic variant of the anti-HER2 Z(HER2:342) Affibody molecule, Z(HER2:S1), was N-terminally conjugated with the chelators DOTA, NOTA and NODAGA. The conjugated proteins were biophysically characterized by electrospray ionization mass spectroscopy (ESI-MS), circular dichroism (CD) spectroscopy and surface plasmon resonance (SPR)-based biosensor analysis. After labelling with In-111, the biodistribution was assessed in normal mice and the two most promising conjugates were further evaluated for tumour targeting in mice bearing DU-145 prostate cancer xenografts. Results The HER2-binding equilibrium dissociation constants were 130, 140 and 90 pM for DOTA-Z(HER2:S1), NOTA-Z(HER2:S1) and NODAGA-Z(HER2:S1), respectively. A comparative study of In-111-labelled DOTA-Z(HER2:S1), NOTA-Z(HER2:S1) and NODAGA-Z(HER2:S1) in normal mice demonstrated a substantial influence of the chelators on the biodistribution properties of the conjugates. In-111-NODAGA-Z(HER2:S1) had the most rapid clearance from blood and healthy tissues. In-111-NOTA-Z(HER2:S1) showed high hepatic uptake and was excluded from further evaluation. In-111-DOTA-Z(HER2:S1) and In-111-NODAGAZHER2: S1 demonstrated specific uptake in DU-145 prostate cancer xenografts in nude mice. The tumour uptake of In-111-NODAGA-Z(HER2:S1), 5.6 +/- 0.4% ID/g, was significantly lower than the uptake of In-111-DOTA-Z(HER2:S1), 7.4 +/- 0.5% ID/g, presumably because of lower bioavailability due to more rapid clearance. In-111-NODAGA-Z(HER2:S1) provided higher tumour-to-blood ratio, but somewhat lower tumour-to-liver, tumour-to-spleen and tumour-to-bone ratios. Conclusion Since distant prostate cancer metastases are situated in bone or bone marrow, the higher tumour-to-bone ratio is the most important. This renders In-111-DOTA-Z(HER2:S1) a preferable agent for imaging of HER2 expression in disseminated prostate cancer.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 38

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view