SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Varshney Mukesh) "

Search: WFRF:(Varshney Mukesh)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Latorre-Leal, María, et al. (author)
  • CYP46A1-mediated cholesterol turnover induces sex-specific changes in cognition and counteracts memory loss in ovariectomized mice
  • 2024
  • In: Science advances. - 2375-2548. ; 10:4
  • Journal article (peer-reviewed)abstract
    • The brain-specific enzyme CYP46A1 controls cholesterol turnover by converting cholesterol into 24S-hydroxycholesterol (24OH). Dysregulation of brain cholesterol turnover and reduced CYP46A1 levels are observed in Alzheimer's disease (AD). In this study, we report that CYP46A1 overexpression in aged female mice leads to enhanced estrogen signaling in the hippocampus and improved cognitive functions. In contrast, age-matched CYP46A1 overexpressing males show anxiety-like behavior, worsened memory, and elevated levels of 5α-dihydrotestosterone in the hippocampus. We report that, in neurons, 24OH contributes to these divergent effects by activating sex hormone signaling, including estrogen receptors. CYP46A1 overexpression in female mice protects from memory impairments induced by ovariectomy while having no effects in gonadectomized males. Last, we measured cerebrospinal fluid levels of 24OH in a clinical cohort of patients with AD and found that 24OH negatively correlates with neurodegeneration markers only in women. We suggest that CYP46A1 activation is a valuable pharmacological target for enhancing estrogen signaling in women at risk of developing neurodegenerative diseases.
  •  
2.
  • Lupu, Diana, et al. (author)
  • Fluoxetine Affects Differentiation of Midbrain Dopaminergic Neurons In Vitro
  • 2018
  • In: Molecular Pharmacology. - New York : American Society for Pharmacology and Experimental Therapeutics. - 0026-895X .- 1521-0111. ; 94:4, s. 1220-1231
  • Journal article (peer-reviewed)abstract
    • Recent meta-analyses found an association between prenatal exposure to the antidepressant fluoxetine (FLX) and an increased risk of autism in children. This developmental disorder has been related to dysfunctions in the brains' rewards circuitry, which, in turn, has been linked to dysfunctions in dopaminergic (DA) signaling. The present study investigated if FLX affects processes involved in dopaminergic neuronal differentiation. Mouse neuronal precursors were differentiated into midbrain dopaminergic precursor cells (mDPCs) and concomitantly exposed to clinically relevant doses of FLX. Subsequently, dopaminergic precursors were evaluated for expression of differentiation and stemness markers using quantitative polymerase chain reaction. FLX treatment led to increases in early regional specification markers orthodenticle homeobox 2 (Otx2) and homeobox engrailed-1 and -2 (En1 and En2). On the other hand, two transcription factors essential for midbrain dopaminergic (mDA) neurogenesis, LIM homeobox transcription factor 1 alpha (Lmx1a) and paired-like homeodomain transcription factor 3 (Pitx3) were downregulated by FLX treatment. The stemness marker nestin (Nes) was increased, whereas the neuronal differentiation marker beta 3-tubulin (Tubb3) decreased. Additionally, we observed that FLX modulates the expression of several genes associated with autism spectrum disorder and downregulates the estrogen receptors (ERs) alpha and beta. Further investigations using ER beta knockout (BERKO) mDPCs showed that FLX had no or even opposite effects on several of the genes analyzed. These findings suggest that FLX affects differentiation of the dopaminergic system by increasing production of dopaminergic precursors, yet decreasing their maturation, partly via interference with the estrogen system.
  •  
3.
  • Segura-Aguilar, Juan, et al. (author)
  • Astrocytes protect dopaminergic neurons against aminochrome neurotoxicity
  • 2022
  • In: Neural Regeneration Research. - : Medknow. - 1673-5374 .- 1876-7958. ; 17:9, s. 1861-1866
  • Research review (peer-reviewed)abstract
    • Astrocytes protect neurons by modulating neuronal function and survival. Astrocytes support neurons in several ways. They provide energy through the astrocyte-neuron lactate shuttle, protect neurons from excitotoxicity, and internalize neuronal lipid droplets to degrade fatty acids for neuronal metabolic and synaptic support, as well as by their high capacity for glutamate uptake and the conversion of glutamate to glutamine. A recent reported astrocyte system for protection of dopamine neurons against the neurotoxic products of dopamine, such as aminochrome and other o-quinones, were generated under neuromelanin synthesis by oxidizing dopamine catechol structure. Astrocytes secrete glutathione transferase M2-2 through exosomes that transport this enzyme into dopaminergic neurons to protect these neurons against aminochrome neurotoxicity. The role of this new astrocyte protective mechanism in Parkinson´s disease is discussed.
  •  
4.
  • Segura-Aguilar, Juan, et al. (author)
  • Neuroprotection against Aminochrome Neurotoxicity : Glutathione Transferase M2-2 and DT-Diaphorase
  • 2022
  • In: Antioxidants. - : MDPI AG. - 2076-3921. ; 11:2
  • Journal article (peer-reviewed)abstract
    • Glutathione is an important antioxidant that plays a crucial role in the cellular protection against oxidative stress and detoxification of electrophilic mutagens, and carcinogens. Glutathione transferases are enzymes catalyzing glutathione-dependent reactions that lead to inactivation and conjugation of toxic compounds, processes followed by subsequent excretion of the detoxified products. Degeneration and loss of neuromelanin-containing dopaminergic neurons in the nigrostriatal neurons generally involves oxidative stress, neuroinflammation, alpha-synuclein aggregation to neurotoxic oligomers, mitochondrial dysfunction, protein degradation dysfunction, and endoplasmic reticulum stress. However, it is still unclear what triggers these neurodegenerative processes. It has been reported that aminochrome may elicit all of these mechanisms and, interestingly, aminochrome is formed inside neuromelanin-containing dopaminergic neurons during neuromelanin synthesis. Aminochrome is a neurotoxic ortho-quinone formed in neuromelanin synthesis. However, it seems paradoxical that the neurotoxin aminochrome is generated during neuromelanin synthesis, even though healthy seniors have these neurons intact when they die. The explanation of this paradox is the existence of protective tools against aminochrome neurotoxicity composed of the enzymes DT-diaphorase, expressed in these neurons, and glutathione transferase M2-2, expressed in astrocytes. Recently, it has been reported that dopaminergic neurons can be protected by glutathione transferase M2-2 from astrocytes, which secrete exosomes containing the protective enzyme.
  •  
5.
  • Valdes, Raúl, et al. (author)
  • Cellular Trafficking of Glutathione Transferase M2-2 Between U373MG and SHSY-S7 Cells is Mediated by Exosomes
  • 2021
  • In: Neurotoxicity research. - : Springer Science and Business Media LLC. - 1029-8428 .- 1476-3524. ; 39:2, s. 182-190
  • Journal article (peer-reviewed)abstract
    • The enzyme glutathione transferase M2-2, expressed in human astrocytes, increases its expression in the presence of aminochrome and catalyzes the conjugation of aminochrome, preventing its toxic effects. Secretion of the enzyme glutathione transferase M2-2 from U373MG cells, used as a cellular model for astrocytes, has been reported, and the enzyme is taken up by neuroblastoma SYSH-S7 cells and provide protection against aminochrome. The present study provides evidence that glutathione transferase M2-2 is released in exosomes from U373MG cells, thereby providing a means for intercellular transport of the enzyme. With particular relevance to Parkinson disease and other degenerative conditions, we propose a new mechanism by which astrocytes may protect dopaminergic neurons against the endogenous neurotoxin aminochrome.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view