SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Vermant Jan) "

Search: WFRF:(Vermant Jan)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Alison, Lauriane, et al. (author)
  • Emulsions Stabilized by Chitosan-Modified Silica Nanoparticles : pH Control of Structure-Property Relations
  • 2018
  • In: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 34:21, s. 6147-6160
  • Journal article (peer-reviewed)abstract
    • In food-grade emulsions, particles with an appropriate surface modification can be used to replace surfactants and potentially enhance the stability of emulsions. During the life cycle of products based on such emulsions, they can be exposed to a broad range of pH conditions and hence it is crucial to understand how pH changes affect stability of emulsions stabilized by particles. Here, we report on a comprehensive study of the stability, microstructure, and macroscopic behavior of pH-controlled oil-in-water emulsions containing silica nanoparticles modified with chitosan, a food-grade polycation. We found that the modified colloidal particles used as stabilizers behave differently depending on the pH, resulting in unique emulsion structures at multiple length scales. Our findings are rationalized in terms of the different emulsion stabilization mechanisms involved, which are determined by the pH-dependent charges and interactions between the colloidal building blocks of the system. At pH 4, the silica particles are partially hydrophobized through chitosan modification, favoring their adsorption at the oil-water interface and the formation of Pickering emulsions. At pH 5.5, the particles become attractive and the emulsion is stabilized by a network of agglomerated particles formed between the droplets. Finally, chitosan aggregates form at pH 9 and these act as the emulsion stabilizers under alkaline conditions. These insights have important implications for the processing and use of particle-stabilized emulsions. On one hand, changes in pH can lead to undesired macroscopic phase separation or coalescence of oil droplets. On the other hand, the pH effect on emulsion behavior can be harnessed in industrial processing, either to tune their flow response by altering the pH between processing stages or to produce pH-responsive emulsions that enhance the functionality of the emulsified end products.
  •  
2.
  • Crassous, Jerome, et al. (author)
  • Field-induced assembly of colloidal ellipsoids into well-defined microtubules.
  • 2014
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 5
  • Journal article (peer-reviewed)abstract
    • Current theoretical attempts to understand the reversible formation of stable microtubules and virus shells are generally based on shape-specific building blocks or monomers, where the local curvature of the resulting structure is explicitly built-in via the monomer geometry. Here we demonstrate that even simple ellipsoidal colloids can reversibly self-assemble into regular tubular structures when subjected to an alternating electric field. Supported by model calculations, we discuss the combined effects of anisotropic shape and field-induced dipolar interactions on the reversible formation of self-assembled structures. Our observations show that the formation of tubular structures through self-assembly requires much less geometrical and interaction specificity than previously thought, and advance our current understanding of the minimal requirements for self-assembly into regular virus-like structures.
  •  
3.
  • Rey, Marcel, 1989, et al. (author)
  • Interactions between interfaces dictate stimuli-responsive emulsion behaviour
  • 2023
  • In: NATURE COMMUNICATIONS. - 2041-1723. ; 14:1
  • Journal article (peer-reviewed)abstract
    • Stimuli-responsive emulsions offer a dual advantage, combining long-term storage with controlled release triggered by external cues such as pH or temperature changes. This study establishes that thermo-responsive emulsion behaviour is primarily determined by interactions between, rather than within, interfaces. Consequently, the stability of these emulsions is intricately tied to the nature of the stabilizing microgel particles - whether they are more polymeric or colloidal, and the morphology they assume at the liquid interface. The colloidal properties of the microgels provide the foundation for the long-term stability of Pickering emulsions. However, limited deformability can lead to non-responsive emulsions. Conversely, the polymeric properties of the microgels enable them to spread and flatten at the liquid interface, enabling stimuli-responsive behaviour. Furthermore, microgels shared between two emulsion droplets in flocculated emulsions facilitate stimuli-responsiveness, regardless of their internal architecture. This underscores the pivotal role of microgel morphology and the forces they exert on liquid interfaces in the control and design of stimuli-responsive emulsions and interfaces. Stimuli-responsive emulsions are useful for long-term storage combined with controlled release, but the fundamental mechanism behind this release is not established. Here, the authors report a study into the effect of individual microgel morphology on the destabilisation of responsive emulsions.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view