SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Vial G) "

Search: WFRF:(Vial G)

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Judge, Philip G., et al. (author)
  • New Light on an Old Problem of the Cores of Solar Resonance Lines
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 901:1
  • Journal article (peer-reviewed)abstract
    • We reexamine a 50+ yr old problem of deep central reversals predicted for strong solar spectral lines, in contrast to the smaller reversals seen in observations. We examine data and calculations for the resonance lines of H i, Mg ii, and Ca ii, the self-reversed cores of which form in the upper chromosphere. Based on 3D simulations, as well as data for the Mg ii lines from the Interface Region Imaging Spectrograph (IRIS), we argue that the resolution lies not in velocity fields on scales in either of the micro- or macroturbulent limits. Macroturbulence is ruled out using observations of optically thin lines formed in the upper chromosphere, and by showing that it would need to have unreasonably special properties to account for critical observations of the Mg ii resonance lines from the IRIS mission. The power in "turbulence" in the upper chromosphere may therefore be substantially lower than earlier analyses have inferred. Instead, in 3D calculations horizontal radiative transfer produces smoother source functions, smoothing out intensity gradients in wavelength and in space. These effects increase in stronger lines. Our work will have consequences for understanding the onset of the transition region, for understanding the energy in motions available for heating the corona, and for the interpretation of polarization data in terms of the Hanle effect applied to resonance line profiles.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Telloni, Daniele, et al. (author)
  • Linking Small-scale Solar Wind Properties with Large-scale Coronal Source Regions through Joint Parker Solar Probe-Metis/Solar Orbiter Observations
  • 2022
  • In: Astrophysical Journal. - : IOP Publishing Ltd. - 0004-637X .- 1538-4357. ; 935:2
  • Journal article (peer-reviewed)abstract
    • The solar wind measured in situ by Parker Solar Probe in the very inner heliosphere is studied in combination with the remote-sensing observation of the coronal source region provided by the METIS coronagraph aboard Solar Orbiter. The coronal outflows observed near the ecliptic by Metis on 2021 January 17 at 16:30 UT, between 3.5 and 6.3 R (circle dot) above the eastern solar limb, can be associated with the streams sampled by PSP at 0.11 and 0.26 au from the Sun, in two time intervals almost 5 days apart. The two plasma flows come from two distinct source regions, characterized by different magnetic field polarity and intensity at the coronal base. It follows that both the global and local properties of the two streams are different. Specifically, the solar wind emanating from the stronger magnetic field region has a lower bulk flux density, as expected, and is in a state of well-developed Alfvenic turbulence, with low intermittency. This is interpreted in terms of slab turbulence in the context of nearly incompressible magnetohydrodynamics. Conversely, the highly intermittent and poorly developed turbulent behavior of the solar wind from the weaker magnetic field region is presumably due to large magnetic deflections most likely attributed to the presence of switchbacks of interchange reconnection origin.
  •  
10.
  • Tubbs, Emily, et al. (author)
  • Sulforaphane improves disrupted ER-mitochondria interactions and suppresses exaggerated hepatic glucose production
  • 2018
  • In: Molecular and Cellular Endocrinology. - : Elsevier BV. - 0303-7207. ; 461:C, s. 205-214
  • Journal article (peer-reviewed)abstract
    • Aims: Exaggerated hepatic glucose production is one of the hallmarks of type 2 diabetes. Sulforaphane (SFN) has been suggested as a new potential anti-diabetic compound. However, the effects of SFN in hepatocytes are yet unclear. Accumulating evidence points to the close structural contacts between the ER and mitochondria, known as mitochondria-associated ER membranes (MAMs), as important hubs for hepatic metabolism. We wanted to investigate whether SFN could affect hepatic glucose production and MAMs. Materials and methods: We used proximity ligation assays, analysis of ER stress markers and glucose production assays in hepatoma cell lines, primary mouse hepatocytes and diabetic animal models. Results: SFN counteracted the increase of glucose production in palmitate-treated mouse hepatocytes. SFN also counteracted palmitate-induced MAM disruptions. Moreover, SFN decreased the ER stress markers CHOP and Grp78. In ob/ob mice, SFN improved glucose tolerance and reduced exaggerated glucose production. In livers of these mice, SFN increased MAM protein content, restored impaired VDAC1-IP3R1 interactions and reduced ER stress markers. In mice on HFHSD, SFN improved glucose tolerance, MAM protein content and ER-mitochondria interactions to a similar extent to that of metformin. Conclusions: The present findings show that MAMs are severely reduced in animal models of glucose intolerance, which reinforces the role of MAMs as a hub for insulin signaling in the liver. We also show that SFN restores MAMs and improves glucose tolerance by a similar magnitude to that of metformin. These data highlight SFN as a new potential anti-diabetic compound. (C) 2017 Elsevier B.V. All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view