SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Volarevic Sinisa) "

Search: WFRF:(Volarevic Sinisa)

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Dubbaka Venu, Pradeep Reddy, 1982-, et al. (author)
  • PDK1 signaling in oocytes controls reproductive aging and lifespan by manipulating the survival of primordial follicles
  • 2009
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 18:15, s. 2813-2824
  • Journal article (peer-reviewed)abstract
    • The molecular mechanisms that control reproductive aging and menopausal age in females are poorly understood. Here, we provide genetic evidence that 3-phosphoinositide-dependent protein kinase-1 (PDK1) signaling in oocytes preserves reproductive lifespan by maintaining the survival of ovarian primordial follicles. In mice lacking the PDK1-encoding gene Pdk1 in oocytes, the majority of primordial follicles are depleted around the onset of sexual maturity, causing premature ovarian failure (POF) during early adulthood. We further showed that suppressed PDK1-Akt-p70 S6 kinase 1 (S6K1)-ribosomal protein S6 (rpS6) signaling in oocytes appears to be responsible for the loss of primordial follicles, and mice lacking the Rps6 gene in oocytes show POF similar to that in Pdk1-deficient mice. In combination with our earlier finding that phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in oocytes suppresses follicular activation, we have now pinpointed the molecular network involving phosphatidylinositol 3 kinase (PI3K)/PTEN-PDK1 signaling in oocytes that controls the survival, loss and activation of primordial follicles, which together determine reproductive aging and the length of reproductive life in females. Underactivation or overactivation of this signaling pathway in oocytes is shown to cause pathological conditions in the ovary, including POF and infertility.
  •  
2.
  • Sideridou, Maria, et al. (author)
  • Cdc6 expression represses E-cadherin transcription and activates adjacent replication origins
  • 2011
  • In: Journal of Cell Biology. - : Rockefeller University Press. - 0021-9525 .- 1540-8140. ; 195:7, s. 1123-1140
  • Journal article (peer-reviewed)abstract
    • E-cadherin (CDH1) loss occurs frequently in carcinogenesis, contributing to invasion and metastasis. We observed that mouse and human epithelial cell lines overexpressing the replication licensing factor Cdc6 underwent phenotypic changes with mesenchymal features and loss of E-cadherin. Analysis in various types of human cancer revealed a strong correlation between increased Cdc6 expression and reduced E-cadherin levels. Prompted by these findings, we discovered that Cdc6 repressed CDH1 transcription by binding to the E-boxes of its promoter, leading to dissociation of the chromosomal insulator CTCF, displacement of the histone variant H2A.Z, and promoter heterochromatinization. Mutational analysis identified the Walker B motif and C-terminal region of Cdc6 as essential for CDH1 transcriptional suppression. Strikingly, CTCF displacement resulted in activation of adjacent origins of replication. These data demonstrate that Cdc6 acts as a molecular switch at the E-cadherin locus, linking transcriptional repression to activation of replication, and provide a telling example of how replication licensing factors could usurp alternative programs to fulfill distinct cellular functions.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view