SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Waage Johannes) "

Search: WFRF:(Waage Johannes)

  • Result 1-10 of 10
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Smith, Jennifer A, et al. (author)
  • Genome-wide association study identifies 74 loci associated with educational attainment
  • 2016
  • In: Nature (London). - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 533:7604, s. 539-542
  • Journal article (peer-reviewed)abstract
    • Educational attainment is strongly influenced by social and other environmental factors, but genetic factors are estimated to account for at least 20% of the variation across individuals. Here we report the results of a genome-wide association study (GWAS) for educational attainment that extends our earlier discovery sample of 101,069 individuals to 293,723 individuals, and a replication study in an independent sample of 111,349 individuals from the UK Biobank. We identify 74 genome-wide significant loci associated with the number of years of schooling completed. Single-nucleotide polymorphisms associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioural phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because educational attainment is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric diseases.
  •  
2.
  • Ahluwalia, Tarunveer S., et al. (author)
  • A novel rare CUBN variant and three additional genes identified in Europeans with and without diabetes : results from an exome-wide association study of albuminuria
  • 2019
  • In: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 62:2, s. 292-305
  • Journal article (peer-reviewed)abstract
    • Aims/hypothesis: Identifying rare coding variants associated with albuminuria may open new avenues for preventing chronic kidney disease and end-stage renal disease, which are highly prevalent in individuals with diabetes. Efforts to identify genetic susceptibility variants for albuminuria have so far been limited, with the majority of studies focusing on common variants. Methods: We performed an exome-wide association study to identify coding variants in a two-stage (discovery and replication) approach. Data from 33,985 individuals of European ancestry (15,872 with and 18,113 without diabetes) and 2605 Greenlanders were included. Results: We identified a rare (minor allele frequency [MAF]: 0.8%) missense (A1690V) variant in CUBN (rs141640975, β = 0.27, p = 1.3 × 10−11) associated with albuminuria as a continuous measure in the combined European meta-analysis. The presence of each rare allele of the variant was associated with a 6.4% increase in albuminuria. The rare CUBN variant had an effect that was three times stronger in individuals with type 2 diabetes compared with those without (pinteraction = 7.0 × 10−4, β with diabetes = 0.69, β without diabetes = 0.20) in the discovery meta-analysis. Gene-aggregate tests based on rare and common variants identified three additional genes associated with albuminuria (HES1, CDC73 and GRM5) after multiple testing correction (pBonferroni < 2.7 × 10−6). Conclusions/interpretation: The current study identifies a rare coding variant in the CUBN locus and other potential genes associated with albuminuria in individuals with and without diabetes. These genes have been implicated in renal and cardiovascular dysfunction. The findings provide new insights into the genetic architecture of albuminuria and highlight target genes and pathways for the prevention of diabetes-related kidney disease.
  •  
3.
  • Bustamante, Mariona, et al. (author)
  • A genome-wide association meta-analysis of diarrhoeal disease in young children identifies FUT2 locus and provides plausible biological pathways.
  • 2016
  • In: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 0964-6906. ; 25:18, s. 4127-4142
  • Journal article (peer-reviewed)abstract
    • More than a million childhood diarrhoeal episodes occur worldwide each year, and in developed countries a considerable part of them are caused by viral infections. In this study, we aimed to search for genetic variants associated with diarrhoeal disease in young children by meta-analyzing genome-wide association studies, and to elucidate plausible biological mechanisms. The study was conducted in the context of the Early Genetics and Lifecourse Epidemiology (EAGLE) consortium. Data about diarrhoeal disease in two time windows (around 1 year of age and around 2 years of age) was obtained via parental questionnaires, doctor interviews or medical records. Standard quality control and statistical tests were applied to the 1000 Genomes imputed genotypic data. The meta-analysis (N=5758) followed by replication (N=3784) identified a genome-wide significant association between rs8111874 and diarrhoea at age 1 year. Conditional analysis suggested that the causal variant could be rs601338 (W154X) in the FUT2 gene. Children with the A allele, which results in a truncated FUT2 protein, had lower risk of diarrhoea. FUT2 participates in the production of histo-blood group antigens and has previously been implicated in the susceptibility to infections, including Rotavirus and Norovirus Gene-set enrichment analysis suggested pathways related to the histo-blood group antigen production, and the regulation of ion transport and blood pressure. Among others, the gastrointestinal tract, and the immune and neuro-secretory systems were detected as relevant organs. In summary, this genome-wide association meta-analysis suggests the implication of the FUT2 gene in diarrhoeal disease in young children from the general population.
  •  
4.
  • Delios, A., et al. (author)
  • Examining the generalizability of research findings from archival data
  • 2022
  • In: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 119:30
  • Journal article (peer-reviewed)abstract
    • This initiative examined systematically the extent to which a large set of archival research findings generalizes across contexts. We repeated the key analyses for 29 original strategic management effects in the same context (direct reproduction) as well as in 52 novel time periods and geographies; 45% of the reproductions returned results matching the original reports together with 55% of tests in different spans of years and 40% of tests in novel geographies. Some original findings were associated with multiple new tests. Reproducibility was the best predictor of generalizability-for the findings that proved directly reproducible, 84% emerged in other available time periods and 57% emerged in other geographies. Overall, only limited empirical evidence emerged for context sensitivity. In a forecasting survey, independent scientists were able to anticipate which effects would find support in tests in new samples. 
  •  
5.
  • Felix, Janine F, et al. (author)
  • Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index.
  • 2016
  • In: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 0964-6906. ; 25:2, s. 389-403
  • Journal article (peer-reviewed)abstract
    • A large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown. We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation scores. We included 35 668 children from 20 studies in the discovery phase and 11 873 children from 13 studies in the replication phase. In total, 15 loci reached genome-wide significance (P-value < 5 × 10(-8)) in the joint discovery and replication analysis, of which 12 are previously identified loci in or close to ADCY3, GNPDA2, TMEM18, SEC16B, FAIM2, FTO, TFAP2B, TNNI3K, MC4R, GPR61, LMX1B and OLFM4 associated with adult body mass index or childhood obesity. We identified three novel loci: rs13253111 near ELP3, rs8092503 near RAB27B and rs13387838 near ADAM23. Per additional risk allele, body mass index increased 0.04 Standard Deviation Score (SDS) [Standard Error (SE) 0.007], 0.05 SDS (SE 0.008) and 0.14 SDS (SE 0.025), for rs13253111, rs8092503 and rs13387838, respectively. A genetic risk score combining all 15 SNPs showed that each additional average risk allele was associated with a 0.073 SDS (SE 0.011, P-value = 3.12 × 10(-10)) increase in childhood body mass index in a population of 1955 children. This risk score explained 2% of the variance in childhood body mass index. This study highlights the shared genetic background between childhood and adult body mass index and adds three novel loci. These loci likely represent age-related differences in strength of the associations with body mass index.
  •  
6.
  • Haworth, Simon, et al. (author)
  • Consortium-based genome-wide meta-analysis for childhood dental caries traits
  • 2018
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 27:17, s. 3113-3127
  • Journal article (peer-reviewed)abstract
    • Prior studies suggest dental caries traits in children and adolescents are partially heritable, but there has been no large-scale consortium genome-wide association study (GWAS) to date. We therefore performed GWAS for caries in participants aged 2.5-18.0 years from nine contributing centres. Phenotype definitions were created for the presence or absence of treated or untreated caries, stratified by primary and permanent dentition. All studies tested for association between caries and genotype dosage and the results were combined using fixed-effects meta-analysis. Analysis included up to 19 003 individuals (7530 affected) for primary teeth and 13 353 individuals (5875 affected) for permanent teeth. Evidence for association with caries status was observed at rs1594318-C for primary teeth [intronic within ALLC, odds ratio (OR) 0.85, effect allele frequency (EAF) 0.60, P 4.13e-8] and rs7738851-A (intronic within NEDD9, OR 1.28, EAF 0.85, P 1.63e-8) for permanent teeth. Consortiumwide estimated heritability of caries was low [h2 of 1% (95% CI: 0%: 7%) and 6% (95% CI 0%: 13%) for primary and permanent dentitions, respectively] compared with corresponding within-study estimates [h2 of 28% (95% CI: 9%: 48%) and 17% (95% CI: 2%: 31%)] or previously published estimates. This study was designed to identify common genetic variants with modest effects which are consistent across different populations. We found few single variants associated with caries status under these assumptions. Phenotypic heterogeneity between cohorts and limited statistical power will have contributed; these findings could also reflect complexity not captured by our study design, such as genetic effects which are conditional on environmental exposure.
  •  
7.
  •  
8.
  • Pasanen, Anu, et al. (author)
  • NKG2D gene variation and susceptibility to viral bronchiolitis in childhood.
  • 2018
  • In: Pediatric research. - : Springer Science and Business Media LLC. - 1530-0447 .- 0031-3998. ; 84, s. 451-457
  • Journal article (peer-reviewed)abstract
    • Genetic factors associated with bronchiolitis are inadequately characterized. We therefore inspected a selected subpopulation of our previous genome-wide association study (GWAS) of bronchiolitis for overlap with known quantitative trait loci (QTLs) to identify susceptibility loci that potentially affect mRNA and protein levels.GWAS included a Finnish-Swedish case-control population (n=187), matched for age and site. We integrated GWAS variants (p<10-4) with QTL data. We subsequently verified allele-specific expression of identified QTLs by flow cytometry. Association of the resulting candidate loci with bronchiolitis was tested in three additional cohorts from Finland and Denmark (n=1201).Bronchiolitis-susceptibility variant rs10772271 resided within QTLs previously associated with NKG2D (NK group 2, member D) mRNA and protein levels. Flow cytometric analysis confirmed the association with protein level in NK cells. The GWAS susceptibility allele (A) of rs10772271 (odds ratio [OR]=2.34) corresponded with decreased NKG2D expression. The allele was nominally associated with bronchiolitis in one Finnish replicate (OR=1.50), and the other showed directional consistency (OR=1.43). No association was detected in Danish population CONCLUSIONS: The bronchiolitis GWAS susceptibility allele was linked to decreased NKG2D expression in the QTL data and in our expression analysis. We propose that reduced NKG2D expression predisposes infants to severe bronchiolitis.
  •  
9.
  • Thoren, Lina A., et al. (author)
  • UPF2 Is a Critical Regulator of Liver Development, Function and Regeneration
  • 2010
  • In: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 5:7
  • Journal article (peer-reviewed)abstract
    • Background: Nonsense-mediated mRNA decay (NMD) is a post-transcriptional RNA surveillance process that facilitates the recognition and destruction of mRNAs bearing premature terminations codons (PTCs). Such PTC-containing (PTC+) mRNAs may arise from different processes, including erroneous processing and expression of pseudogenes, but also from more regulated events such as alternative splicing coupled NMD (AS-NMD). Thus, the NMD pathway serves both as a silencer of genomic noise and a regulator of gene expression. Given the early embryonic lethality in NMD deficient mice, uncovering the full regulatory potential of the NMD pathway in mammals will require the functional assessment of NMD in different tissues. Methodology/Principal Findings: Here we use mouse genetics to address the role of UPF2, a core NMD component, in the development, function and regeneration of the liver. We find that loss of NMD during fetal liver development is incompatible with postnatal life due to failure of terminal differentiation. Moreover, deletion of Upf2 in the adult liver results in hepatosteatosis and disruption of liver homeostasis. Finally, NMD was found to be absolutely required for liver regeneration. Conclusion/Significance: Collectively, our data demonstrate the critical role of the NMD pathway in liver development, function and regeneration and highlights the importance of NMD for mammalian biology.
  •  
10.
  • van der Valk, Ralf J P, et al. (author)
  • A novel common variant in DCST2 is associated with length in early life and height in adulthood.
  • 2015
  • In: Human molecular genetics. - : Oxford University Press (OUP). - 1460-2083 .- 0964-6906. ; 24:4, s. 1155-68
  • Journal article (peer-reviewed)abstract
    • Common genetic variants have been identified for adult height, but not much is known about the genetics of skeletal growth in early life. To identify common genetic variants that influence fetal skeletal growth, we meta-analyzed 22 genome-wide association studies (Stage 1; N = 28 459). We identified seven independent top single nucleotide polymorphisms (SNPs) (P < 1 × 10(-6)) for birth length, of which three were novel and four were in or near loci known to be associated with adult height (LCORL, PTCH1, GPR126 and HMGA2). The three novel SNPs were followed-up in nine replication studies (Stage 2; N = 11 995), with rs905938 in DC-STAMP domain containing 2 (DCST2) genome-wide significantly associated with birth length in a joint analysis (Stages 1 + 2; β = 0.046, SE = 0.008, P = 2.46 × 10(-8), explained variance = 0.05%). Rs905938 was also associated with infant length (N = 28 228; P = 5.54 × 10(-4)) and adult height (N = 127 513; P = 1.45 × 10(-5)). DCST2 is a DC-STAMP-like protein family member and DC-STAMP is an osteoclast cell-fusion regulator. Polygenic scores based on 180 SNPs previously associated with human adult stature explained 0.13% of variance in birth length. The same SNPs explained 2.95% of the variance of infant length. Of the 180 known adult height loci, 11 were genome-wide significantly associated with infant length (SF3B4, LCORL, SPAG17, C6orf173, PTCH1, GDF5, ZNFX1, HHIP, ACAN, HLA locus and HMGA2). This study highlights that common variation in DCST2 influences variation in early growth and adult height.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 10
Type of publication
journal article (10)
Type of content
peer-reviewed (10)
Author/Editor
Waage, Johannes (9)
Timpson, Nicholas J. (5)
Jacobsson, Bo, 1960 (4)
Ahluwalia, Tarunveer ... (4)
Rivadeneira, Fernand ... (4)
Sunyer, Jordi (3)
show more...
Melbye, Mads (3)
Davey Smith, George (3)
McCarthy, Mark I (3)
Lehtimäki, Terho (3)
Boomsma, Dorret I. (3)
Hakonarson, Hakon (3)
Evans, David M (3)
Hofman, Albert (3)
Ring, Susan M (3)
Uitterlinden, André ... (3)
Dedoussis, George V. (3)
Horikoshi, Momoko (3)
Geller, Frank (3)
Myhre, Ronny (3)
Bradfield, Jonathan ... (3)
Magnus, Per (2)
Raitakari, Olli T (2)
Heinrich, Joachim (2)
Koppelman, Gerard H. (2)
Wennergren, Göran, 1 ... (2)
Johannesson, Magnus (2)
Estivill, Xavier (2)
Sengpiel, Verena, 19 ... (2)
Grarup, Niels (2)
Pedersen, Oluf (2)
Hansen, Torben (2)
van Duijn, Cornelia ... (2)
Kähönen, Mika (2)
Eriksson, Johan (2)
Mahajan, Anubha (2)
Sørensen, Thorkild I ... (2)
Postma, Dirkje S (2)
Hartikainen, Anna-Li ... (2)
Pennell, Craig E (2)
Järvelin, Marjo-Riit ... (2)
Hirschhorn, Joel N. (2)
Zeggini, Eleftheria (2)
Lyytikäinen, Leo-Pek ... (2)
Hottenga, Jouke-Jan (2)
Bacelis, Jonas, 1984 (2)
Palotie, Aarno (2)
Ntalla, Ioanna (2)
St Pourcain, Beate (2)
Kreiner-Møller, Eski ... (2)
show less...
University
University of Gothenburg (6)
Lund University (3)
Stockholm School of Economics (2)
Karolinska Institutet (2)
Umeå University (1)
Royal Institute of Technology (1)
show more...
Uppsala University (1)
Mid Sweden University (1)
show less...
Language
English (10)
Research subject (UKÄ/SCB)
Medical and Health Sciences (9)
Natural sciences (1)
Social Sciences (1)
Humanities (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view