SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Wackett Adrian A.) "

Search: WFRF:(Wackett Adrian A.)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Phillips, Helen R. P., et al. (author)
  • Global distribution of earthworm diversity
  • 2019
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 366:6464, s. 480-
  • Journal article (peer-reviewed)abstract
    • Soil organisms, including earthworms, are a key component of terrestrial ecosystems. However, little is known about their diversity, their distribution, and the threats affecting them. We compiled a global dataset of sampled earthworm communities from 6928 sites in 57 countries as a basis for predicting patterns in earthworm diversity, abundance, and biomass. We found that local species richness and abundance typically peaked at higher latitudes, displaying patterns opposite to those observed in aboveground organisms. However, high species dissimilarity across tropical locations may cause diversity across the entirety of the tropics to be higher than elsewhere. Climate variables were found to be more important in shaping earthworm communities than soil properties or habitat cover. These findings suggest that climate change may have serious implications for earthworm communities and for the functions they provide.
  •  
2.
  • Roering, Joshua J., et al. (author)
  • Quantifying erosion rates and weathering pathways that maximize soil organic carbon storage
  • 2023
  • In: Biogeochemistry. - : Springer Nature. - 0168-2563 .- 1573-515X. ; 164, s. 319-333
  • Journal article (peer-reviewed)abstract
    • Primary minerals that enter soils through bedrock weathering and atmospheric deposition can generate poorly crystalline minerals (PCM) that preferentially associate with soil organic carbon (SOC). These associations hinder microbial decomposition and the release of CO2 from soils to the atmosphere, making them a critical geochemical control on terrestrial carbon abundance and persistence. Studies that explore these relationships are typically derived from soil chronosequences that experience negligible erosion and thus do not readily translate to eroding landscapes. Here, we propose a theoretical framework to estimate steady-state PCM density and stocks for hilly and mountainous settings by coupling geochemical and geomorphic mass balance equations that account for soil production from bedrock and dust, soil erosion, PCM formation from weathering, and the transformation of PCMs into crystalline phases. We calculate an optimal erosion rate for maximum PCM abundance that arises because PCMs are limited by insufficient weathering at faster erosion rates and loss via “ripening” into more crystalline forms at slower erosion rates. The optimal erosion rate for modeled hilltop soil is modulated by reaction rate constants that govern the efficiency of primary mineral weathering and PCM ripening. By comparing our analysis with global compilations of erosion and soil production rates derived from cosmogenic nuclides, we show that landscapes with slow-to-moderate erosion rates may be optimal for harboring abundant PCM stocks that can facilitate SOC sequestration and limit turnover. Given the growing array of erosion-topography metrics and the widespread availability of high-resolution topographic data, our framework demonstrates how weathering and critical zone processes can be coupled to inform landscape prioritization for persistent SOC storage potential across a broad range of spatial and temporal scales.
  •  
3.
  • Keen, Sara C., et al. (author)
  • Non-native species change the tune of tundra soils : novel access to soundscapes of the Arctic earthworm invasion
  • 2022
  • In: Science of the Total Environment. - : Elsevier. - 0048-9697 .- 1879-1026. ; 838
  • Journal article (peer-reviewed)abstract
    • Over the last decade, an increasing number of studies have used soundscapes to address diverse ecological questions. Sound represents one of the few sources of information capable of providing in situ insights into processes occurring within opaque soil matrices. To date, the use of soundscapes for soil macrofauna monitoring has been experimentally tested only in controlled laboratory environments. Here we assess the validity of laboratory predictions and explore the use of soil soundscape proxies for monitoring soil macrofauna (i.e., earthworm) activities in an outdoor context. In a common garden experiment in northern Sweden, we constructed outdoor mesocosm plots (N = 36) containing two different Arctic vegetation types (meadow and heath) and introduced earthworms to half of these plots. Earthworms substantially altered the ambient soil soundscape under both vegetation types, as measured by both traditional soundscape indices and frequency band power levels, although their acoustic impacts were expressed differently in heath versus meadow soils. While these findings support the as-of-yet untapped promise of using belowground soundscape analyses to monitor soil ecosystem health, direct acoustic emissions from earthworm activities appear to be an unlikely proxy for tracking worm activities at daily timescales. Instead, earthworms indirectly altered the soil soundscape by ‘re-engineering’ the soil matrix: an effect that was dependent on vegetation type. Our findings suggest that long-term (i.e., seasonal) earthworm activities in natural soil settings can likely be monitored indirectly via their impacts on soundscape measures and acoustic indices. Analyzing soil soundscapes may enable larger-scale monitoring of high-latitude soils and is directly applicable to the specific case of earthworm invasions within Arctic soils, which has recently been identified as a potential threat to the resilience of high-latitude ecosystems. Soil soundscapes could also offer a novel means to monitor soils and soil-plant-faunal interactions in situ across diverse pedogenic, agronomic, and ecological systems.
  •  
4.
  • Wackett, Adrian A., et al. (author)
  • Human-mediated introduction of geoengineering earthworms in the Fennoscandian arctic
  • 2018
  • In: Biological Invasions. - : Springer. - 1387-3547 .- 1573-1464. ; 20:6, s. 1377-1386
  • Journal article (peer-reviewed)abstract
    • It is now well established that European earthworms are re-shaping formerly glaciated forests in North America with dramatic ecological consequences. However, few have considered the potential invasiveness of this species assemblage in the European arctic. Here we argue that some earthworm species (Lumbricus rubellus, Lumbricus terrestris and Aporrectodea sp.) with great geomorphological impact (geoengineering species) are non-native and invasive in the Fennoscandian arctic birch forests, where they have been introduced by agrarian settlers and most recently through recreational fishing and gardening. Our exploratory surveys indicate no obvious historical dispersal mechanism that can explain early arrival of these earthworms into the Fennoscandian arctic: that is, these species do not appear to establish naturally along coastlines mimicking conditions following deglaciation in Fennoscandia, nor were they spread by early native (Sami) cultures. The importance of anthropogenic sources and the invasive characteristics of L. rubellus and Aporrectodea sp. in the arctic is evident from their radiation outwards from abandoned farms and modern cabin lawns into adjacent arctic birch forests. They appear to outcompete previously established litter-dwelling earthworm species (i.e. Dendrobaena octaedra) that likely colonized the Fennoscandian landscape rapidly following deglaciation via hydrochory and/or dispersal by early Sami settlements. The high geoengineering earthworm biomasses, their recognized ecological impact in other formerly glaciated environments, and their persistence once established leads us to suggest that geoengineering earthworms may pose a potent threat to some of the most remote and protected arctic environments in northern Europe.
  •  
5.
  • Wang, Xiang, et al. (author)
  • Consistent mineral-associated organic carbon chemistry with variable erosion rates in a mountainous landscape
  • 2022
  • In: Geoderma. - : Elsevier. - 0016-7061 .- 1872-6259. ; 405
  • Journal article (peer-reviewed)abstract
    • Interactions between organic carbon (OC) and minerals represent a critical mechanism for stabilizing organic matter in soils. Because both mineral weathering and plant productivity are negatively affected by soil erosion, mineral-associated organic carbon (MOC) chemistry is also expected to vary with erosion intensity. Here we show that MOC chemistry, determined by carbon X-ray absorption near-edge fine structure spectroscopy (XANES), exhibits little difference across a large (10-fold) gradient in erosion-derived soil turnover times. Mineral-associated OC chemistry further fails to explain the variation in radiocarbon-based MOC turnover times. Our results suggest that soil OC longevity is largely independent of organic matter chemistry in steep mountainous landscapes where soil development is constrained by erosion.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view