SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Wahli Walter) "

Search: WFRF:(Wahli Walter)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Duszka, Kalina, et al. (author)
  • PPARγ Modulates Long Chain Fatty Acid Processing in the Intestinal Epithelium
  • 2017
  • In: International Journal of Molecular Sciences. - Basel, Switzerland : MDPI. - 1661-6596 .- 1422-0067. ; 18:12
  • Journal article (peer-reviewed)abstract
    • Nuclear receptor PPARγ affects lipid metabolism in several tissues, but its role in intestinal lipid metabolism has not been explored. As alterations have been observed in the plasma lipid profile of ad libitum fed intestinal epithelium-specific PPARγ knockout mice (iePPARγKO), we submitted these mice to lipid gavage challenges. Within hours after gavage with long chain unsaturated fatty acid (FA)-rich canola oil, the iePPARγKO mice had higher plasma free FA levels and lower gastric inhibitory polypeptide levels than their wild-type (WT) littermates, and altered expression of incretin genes and lipid metabolism-associated genes in the intestinal epithelium. Gavage with the medium chain saturated FA-rich coconut oil did not result in differences between the two genotypes. Furthermore, the iePPARγKO mice did not exhibit defective lipid uptake and stomach emptying; however, their intestinal transit was more rapid than in WT mice. When fed a canola oil-rich diet for 4.5 months, iePPARγKO mice had higher body lean mass than the WT mice. We conclude that intestinal epithelium PPARγ is activated preferentially by long chain unsaturated FAs compared to medium chain saturated FAs. Furthermore, we hypothesize that the iePPARγKO phenotype originates from altered lipid metabolism and release in epithelial cells, as well as changes in intestinal motility.
  •  
2.
  • Iglesias, José, et al. (author)
  • PPARβ/δ affects pancreatic β cell mass and insulin secretion in mice
  • 2012
  • In: Journal of Clinical Investigation. - 0021-9738 .- 1558-8238. ; 122:11, s. 4105-4117
  • Journal article (peer-reviewed)abstract
    • PPARβ/δ protects against obesity by reducing dyslipidemia and insulin resistance via effects in muscle, adipose tissue, and liver. However, its function in pancreas remains ill defined. To gain insight into its hypothesized role in β cell function, we specifically deleted Pparb/d in the epithelial compartment of the mouse pancreas. Mutant animals presented increased numbers of islets and, more importantly, enhanced insulin secretion, causing hyperinsulinemia. Gene expression profiling of pancreatic β cells indicated a broad repressive function of PPARβ/δ affecting the vesicular and granular compartment as well as the actin cytoskeleton. Analyses of insulin release from isolated PPARβ/δ-deficient islets revealed an accelerated second phase of glucose-stimulated insulin secretion. These effects in PPARβ/δ-deficient islets correlated with increased filamentous actin (F-actin) disassembly and an elevation in protein kinase D activity that altered Golgi organization. Taken together, these results provide evidence for a repressive role for PPARβ/δ in β cell mass and insulin exocytosis, and shed a new light on PPARβ/δ metabolic action.
  •  
3.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view