SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Wang Guannan) "

Search: WFRF:(Wang Guannan)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Zhang, Xuanjun, 1976-, et al. (author)
  • Coordination polymers for energy transfer: Preparations, properties, sensing applications, and perspectives
  • 2015
  • In: Coordination chemistry reviews. - : Elsevier. - 0010-8545 .- 1873-3840. ; 284, s. 206-235
  • Research review (peer-reviewed)abstract
    • This review highlights the recent progress of bulk and nanoscale coordination polymer (CP) materials forenergy transfer. Artificial light-harvesting materials with efficient energy transfer are practically usefulfor a variety of applications including photovoltaic, white emitting devices, and sensors. In the pastdecades CP (aka Metal-organic framework, MOF) has experienced rapid development due to a multitude of applications, including catalyst, gas storage and separations, non-linear optics, luminescence, and soon. Recent research has shown that CP is a very promising light-harvesting platform because the energytransfers can occur between different ligands, from ligand to metal centers, or from MOF skeleton to guestspecies. This review comprehensively surveyed synthetic approaches to light-harvesting CPs, and postfunctionalization. Sensing applications and achievements in energy-transfer CP nanoparticles and thinfilms were also discussed.
  •  
2.
  • Hu, Zhang-Jun, et al. (author)
  • A facile "click" reaction to fabricate a FRET-based ratiometric fluorescent Cu2+ probe
  • 2014
  • In: Journal of materials chemistry. B. - : Royal Society of Chemistry. - 2050-750X .- 2050-7518. ; 2:28, s. 4467-4472
  • Journal article (peer-reviewed)abstract
    • A facile one-step Cu(I)-catalyzed "click" reaction, between a dansyl-azide and a propargyl-substituted rhodamine B hydrazide, is employed to fabricate a novel FRET ratiometric "off-on" fluorescent probe. The sensitive emission of the donor, a dansyl group, overlaps perfectly with the absorption of the acceptor, xanthene in the open-ring rhodamine. The proposed probe shows high selectivity towards Cu2+. The ratio of emission intensities at 568 and 540 nm (I-568/I-540) exhibits a drastic 28-fold enhancement upon addition of Cu2+. The probe shows an excellent linear relationship between emission ratios and the concentrations of Cu2+ from 10 to 50 mu M, with a detection limit (S/N = 3) of 0.12 mu M. The preliminary cellular studies demonstrated that the probe is cell membrane permeable and could be applied for ratiometric fluorescence imaging of intracellular Cu2+ with almost no cytotoxicity. The ingenuity of the probe design is to construct a FRET donor-acceptor interconnector and a selective receptor simultaneously by "click" reaction. The strategy was verified to have great potential for developing novel FRET probes for Cu2+.
  •  
3.
  • Wang, Guannan, et al. (author)
  • Magneto-fluorescent nanoparticles with high-intensity NIR emission, T-1-and T-2-weighted MR for multimodal specific tumor imaging
  • 2015
  • In: Journal of materials chemistry. B. - : Royal Society of Chemistry. - 2050-750X .- 2050-7518. ; 3:15, s. 3072-3080
  • Journal article (peer-reviewed)abstract
    • Nanoparticles exhibiting bright near-infrared (NIR) fluorescence, T-1-and T-2-weighted MR were synthesized for specific tumor imaging. Clinically used Fe3O4 nanoparticles exhibit an intrinsic dark signal (T-2-weighted MRI), which sometimes misleads clinical diagnosis. Here, for the first time we integrated ultrasmall Fe3O4 nanoparticles (2-3 nm) with an NIR emitting semiconducting polymer for both T-1-and T-2-weighted MRI as well as fluorescence imaging of tumors. Bio-functionalized multi-modality fluorescent magnetic nanoparticles (FMNPs) functionalized with folic acid exhibit bright fluorescence and high relaxation (r(1) = 7.008 mM(-1) s(-1), r(2) = 26.788 mM(-1) s(-1), r(2)/r(1) = 3.8). These FMNPs have a small average dynamic size of about 20 nm with low aggregation and long circulation time. In vitro studies revealed that FMNPs can serve as an effective fluorescent probe to achieve targeting images of human A549 lung cancer cells without obvious cytotoxicity. In vivo experimental results show that the FMNPs are able to preferentially accumulate in tumor tissues for specific fluorescence imaging, T-1-and T-2-weighted MRI.
  •  
4.
  • Wang, Guannan, et al. (author)
  • One-step synthesis of water-dispersible ultra-small Fe3O4 nanoparticles as contrast agents for T-1 and T-2 magnetic resonance imaging
  • 2014
  • In: Nanoscale. - : Royal Society of Chemistry. - 2040-3364 .- 2040-3372. ; 6:5, s. 2953-2963
  • Journal article (peer-reviewed)abstract
    • Uniform, highly water-dispersible and ultra-small Fe3O4 nanoparticles were synthesized via a modified one-step coprecipitation approach. The prepared Fe3O4 nanoparticles not only show good magnetic properties, long-term stability in a biological environment, but also exhibit good biocompatibility in cell viability and hemolysis assay. Due to the ultra-small sized and highly water-dispersibility, they exhibit excellent relaxivity properties, the 1.7 nm sized Fe3O4 nanoparticles reveal a low r(2)/r(1) ratio of 2.03 (r(1) = 8.20 mM(-1) s(-1), r(2) = 16.67 mM(-1) s(-1)); and the 2.2 nm sized Fe3O4 nanoparticles also appear to have a low r2/r1 ratio of 4.65 (r(1) = 6.15 mM(-1) s(-1), r(2) = 28.62 mM(-1) s(-1)). This demonstrates that the proposed ultra-small Fe3O4 nanoparticles have great potential as a new type of T-1 magnetic resonance imaging contrast agents. Especially, the 2.2 nm sized Fe3O4 nanoparticles, have a competitive r(1) value and r(2) value compared to commercial contrasting agents such as Gd-DTPA (r(1) = 4.8 mM(-1) s(-1)), and SHU-555C (r(2) = 69 mM(-1) s(-1)). In vitro and in vivo imaging experiments, show that the 2.2 nm sized Fe3O4 nanoparticles exhibit great contrast enhancement, long-term circulation, and low toxicity, which enable these ultrasmall sized Fe3O4 nanoparticles to be promising as T-1 and T-2 dual contrast agents in clinical settings.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view