SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Waryani Baradi) "

Search: WFRF:(Waryani Baradi)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bhatti, Muhammad Ali, et al. (author)
  • Enzymes and phytochemicals from neem extract robustly tuned the photocatalytic activity of ZnO for the degradation of malachite green (MG) in aqueous media
  • 2021
  • In: Research on chemical intermediates (Print). - : SPRINGER. - 0922-6168 .- 1568-5675. ; 47:4, s. 1581-1599
  • Journal article (peer-reviewed)abstract
    • The malachite green (MG) is very difficult to degrade in water; thus, it needs an efficient photocatalyst. In this study, neem extract was used to tune the surface and crystal properties of ZnO nanostructures for the photodegradation of MG. The biosynthesized ZnO samples were prepared by hydrothermal method in the presence of 5, 10 and 15 mL of neem extract. The structural characterization has shown nanoparticle like morphology of ZnO as revealed by scanning electron microscopy (SEM) and hexagonal phase was confirmed by powder X-ray diffraction (XRD) technique. The XRD analysis has shown a shift in the 2 theta towards lower angle for ZnO with increasing amount of neem extract. Also, the crystallite particle size of ZnO was decreased with increasing neem extract. The UV-visible spectroscopy has shown the decrease in the optical band gap of ZnO, and the lowest band gap is possessed by ZnO sample produced with 15 mL of neem extract. The ZnO sample obtained with 15 mL of neem extract has shown approximately 99% degradation efficiency for MG for 70 min in aqueous solution. The superior photocatalytic activity of ZnO sample with 15 mL of neem extract could be attributed from the decrease in charge recombination rate due to the decreased optical band gap and particle size.
  •  
2.
  • Bhatti, Muhammad Ali, et al. (author)
  • Low Temperature Aqueous Chemical Growth Method for the Doping of W into ZnO Nanostructures and Their Photocatalytic Role in the Degradration of Methylene Blue
  • 2022
  • In: Journal of cluster science. - : SPRINGER/PLENUM PUBLISHERS. - 1040-7278 .- 1572-8862. ; 33:4, s. 1445-1456
  • Journal article (peer-reviewed)abstract
    • In this research work, we have produced tungsten (W) doped ZnO nanostructures via low-temperature aqueous chemical growth method. The morphology, crystal arrays and composition was investigated by scanning electron microscopy (SEM), powder X-ray diffraction (XRD) and energy dispersive X-rays (EDX) respectively. The SEM results indicate the nanowire morphology before and after the doping of W into ZnO and XRD study has shown the hexagonal crystallography of W doped ZnO samples. The EDX study has confirmed the successful doping of W into ZnO crystal lattices. The photodegradation performance of methylene blue was evaluated with W doped ZnO samples and pristine ZnO in aqueous solution. The measured degradation efficiencies for the different W doped ZnO samples were 5 wt%, 10 wt%, 15 wt% and 20 wt% at pH 5 are 87.8%, 92.3%, 92.8% and 96.9%), at pH 9 (72.1%, 90.7%, 92.1%, and 96.4%) and at pH 11 (80%, 85%, 87% and 89%) for the time interval of 90 min respectively. The pH of dye solution has significant effect on the degradation efficiency. These findings show that the W doped ZnO samples have superior degradation efficiency of 96.6% in a very short interval of time. The swift degradation kinetics for the W doped ZnO samples is attributed to the reduction in the energy band gap, decrease in particle size, enhanced surface area, decrease in the recombination rate and foster charge separation process. The obtained results are exciting and providing efficient earth-abundant photocatalysts for the energy and environmental purposes.Kindly confirm the Given names and Family names for all the authors.They are correct.
  •  
3.
  • Bhatti, Muhammad Ali, et al. (author)
  • TiO2/ZnO Nanocomposite Material for Efficient Degradation of Methylene Blue
  • 2021
  • In: Journal of Nanoscience and Nanotechnology. - : AMER SCIENTIFIC PUBLISHERS. - 1533-4880 .- 1533-4899. ; 21:4, s. 2511-2519
  • Journal article (peer-reviewed)abstract
    • In this research work, we have produced a composite material consisting titanium dioxide (TiO2) and zinc oxide (ZnO) nanostructures via precipitation method. Scanning electron microscopy (SEM) study has shown the mixture of nanostructures consisting nanorods and nano flower. Energy dispersive spectroscopy (EDS) study has confirmed the presence of Ti, Zn and O as main elements in the composite. X-ray diffraction (XID) study has revealed that the successful presence of TiO2 and ZnO in the composite. The composite material exhibits small optical energy band gap which led to reduction of the charge recombination rate of electron-hole pairs. The band gap for the composite TiO2/ZnO samples namely 1, 2, 3 and 4 is 3.18, 3.00, 2.97 and 2.83 eV respectively. Small optical bandgap gives less relaxation time for the recombination of electron and hole pairs, thus favorable photodegradation is found. The degradation efficiency for the TiO2/ZnO samples for methylene blue in order of 55.03%, 75.7%, 85.14% and 90.08% is found for the samples 1, 2, 3 and 4 respectively. The proposed study of titanium dioxide addition into ZnO is facile and inexpensive for the development of efficient photocatalysts. This can be capitalized at large scale for the energy and environmental applications.
  •  
4.
  • Gulzar, Ali, et al. (author)
  • Functional CuO Microstructures for Glucose Sensing
  • 2018
  • In: Journal of Electronic Materials. - : Springer. - 0361-5235 .- 1543-186X. ; 47:2, s. 1519-1525
  • Journal article (peer-reviewed)abstract
    • CuO microstructures are produced in the presence of water-soluble amino acids by hydrothermal method. The used amino acids include isoleucine, alpha alanine, and arginine as a soft template and are used for tuning the morphology of CuO nanostructures. The crystalline and morphological investigations were carried out by x-ray diffraction (XRD) and scanning electron microscopy techniques. The XRD study has shown that CuO material obtained in the presence of different amino acids is of high purity and all have the same crystal phase. The CuO microstructures prepared in the presence of arginine were used for the development of sensitive and selective glucose biosensor. The linear range for the glucose detection are from 0.001 mM to 30 mM and limit of detection was found to be 0.0005 mM. The sensitivity was estimated around 77 mV/decade. The developed biosensor is highly selective, sensitive, stable and reproducible. The glucose biosensor was used for the determination of real human blood samples and the obtained results are satisfactory. The CuO material is functional therefore can be capitalized in wide range of applications such as lithium ion batteries, all oxide solar cells and supercapacitors.
  •  
5.
  • Shah, Aqeel Ahmed, et al. (author)
  • Tin as an Effective Doping Agent into ZnO for the Improved Photodegradation of Rhodamine B
  • 2021
  • In: Journal of Nanoscience and Nanotechnology. - : AMER SCIENTIFIC PUBLISHERS. - 1533-4880 .- 1533-4899. ; 21:4, s. 2529-2537
  • Journal article (peer-reviewed)abstract
    • We have fabricated ZnO nano rods by hydrothermal method and successively doped them with tin (Sn) using different concentrations of 25, 50, 75 and 100 mg of tin chloride. XRD of the fabricated structures showed that ZnO possess hexagonal wurtzite phase. Scanning electron microscopy (SEM) was used to explore the morphology and it shows nanorod like morphology for all samples and no considerable change in the structural features were found. The dimension of nanorod is 200 to 300 nm. The doped materials were then investigated for their photo catalytic degradation of environmental pollutant Rhodamine B. The performance of doped ZnO is compared with the pristine ZnO. Scanning electron microscopy (SEM) was used to explore the morphology and it shows nanorod like morphology for all samples and no considerable change in the structural features were found. The dimension of nanorod is 200 to 300 nm. XRD of the fabricated structures showed that ZnO possess hexagonal wurtzite phase. Photo catalytic activity of rhodamine B was investigated under UV light and a maximum degradation efficiency of 85% was obtained. The optical property reveals the reduction in band gap of upto 17.14% for 100 mg Sn doped ZnO. The degradation is followed by the pseudo order kinetics. The produced results are unique in terms of facile synthesis of Sn doped ZnO and excellent photo degradation efficiency, therefore these materials can be used for other environmental applications.
  •  
6.
  •  
7.
  • Waryani, Baradi, et al. (author)
  • The Enzyme Free Uric Acid Sensor Based on Iron Doped CuO Nanostructures for the Determination of Uric Acid from Commercial Seafood
  • 2020
  • In: Journal of Electronic Materials. - : SPRINGER. - 0361-5235 .- 1543-186X. ; 49:10, s. 6123-6129
  • Journal article (peer-reviewed)abstract
    • In this study, a wet chemical method was used to produce iron-doped CuO nanostructures. Cyclic voltammetry was employed to record sensor signals in a saline phosphate buffer solution of pH 7.3. Iron added into CuO nanostructures contributed electrons to the conduction band of CuO, showing a well-resolved electro-oxidation peak for uric acid. The developed sensor exhibits a wide linear range of uric acid concentrations from 0.05 mM to 4 mM. The limit of detection for the sensor was found to be 0.01 mM. The sensor is highly selective, sensitive, and stable. The results of the in vitro analysis of uric acid motivated the researchers to measure the uric acid from the marine shellfishPerna viridisand razor clamSolen dactylus. The obtained results reveal that the proposed sensor will help to avoid the gout and could be used as an early safeguard of human health.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view