SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Weber Marcus) "

Search: WFRF:(Weber Marcus)

  • Result 1-10 of 14
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Bauer, Wolfgang, et al. (author)
  • Plasma Proteome Fingerprints Reveal Distinctiveness and Clinical Outcome of SARS-CoV-2 Infection
  • 2021
  • In: Viruses. - : MDPI. - 1999-4915. ; 13:12
  • Journal article (peer-reviewed)abstract
    • Background: We evaluated how plasma proteomic signatures in patients with suspected COVID-19 can unravel the pathophysiology, and determine kinetics and clinical outcome of the infection.Methods: Plasma samples from patients presenting to the emergency department (ED) with symptoms of COVID-19 were stratified into: (1) patients with suspected COVID-19 that was not confirmed (n = 44); (2) non-hospitalized patients with confirmed COVID-19 (n = 44); (3) hospitalized patients with confirmed COVID-19 (n = 53) with variable outcome; and (4) patients presenting to the ED with minor diseases unrelated to SARS-CoV-2 infection (n = 20). Besides standard of care diagnostics, 177 circulating proteins related to inflammation and cardiovascular disease were analyzed using proximity extension assay (PEA, Olink) technology.Results: Comparative proteome analysis revealed 14 distinct proteins as highly associated with SARS-CoV-2 infection and 12 proteins with subsequent hospitalization (p < 0.001). ADM, IL-6, MCP-3, TRAIL-R2, and PD-L1 were each predictive for death (AUROC curve 0.80-0.87). The consistent increase of these markers, from hospital admission to intensive care and fatality, supported the concept that these proteins are of major clinical relevance.Conclusions: We identified distinct plasma proteins linked to the presence and course of COVID-19. These plasma proteomic findings may translate to a protein fingerprint, helping to assist clinical management decisions.
  •  
3.
  • Dima, Danai, et al. (author)
  • Subcortical volumes across the lifespan : Data from 18,605 healthy individuals aged 3-90 years.
  • 2022
  • In: Human Brain Mapping. - : Wiley. - 1065-9471 .- 1097-0193. ; 43:1, s. 452-469
  • Journal article (peer-reviewed)abstract
    • Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine age-related trajectories inferred from cross-sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter-individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age-related morphometric patterns.
  •  
4.
  • Frangou, Sophia, et al. (author)
  • Cortical thickness across the lifespan : Data from 17,075 healthy individuals aged 3-90 years
  • 2022
  • In: Human Brain Mapping. - : John Wiley & Sons. - 1065-9471 .- 1097-0193. ; 43:1, s. 431-451
  • Journal article (peer-reviewed)abstract
    • Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large-scale studies. In response, we used cross-sectional data from 17,075 individuals aged 3-90 years from the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to infer age-related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta-analysis and one-way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes.
  •  
5.
  • Mehta, Raghav, et al. (author)
  • QU-BraTS : MICCAI BraTS 2020 Challenge on QuantifyingUncertainty in Brain Tumor Segmentation - Analysis of Ranking Scores and Benchmarking Results
  • 2022
  • In: Journal of Machine Learning for Biomedical Imaging. - 2766-905X. ; , s. 1-54
  • Journal article (peer-reviewed)abstract
    • Deep learning (DL) models have provided the state-of-the-art performance in a wide variety of medical imaging benchmarking challenges, including the Brain Tumor Segmentation (BraTS) challenges. However, the task of focal pathology multi-compartment segmentation (e.g., tumor and lesion sub-regions) is particularly challenging, and potential errors hinder the translation of DL models into clinical workflows. Quantifying the reliability of DL model predictions in the form of uncertainties, could enable clinical review of the most uncertain regions, thereby building trust and paving the way towards clinical translation. Recently, a number of uncertainty estimation methods have been introduced for DL medical image segmentation tasks. Developing scores to evaluate and compare the performance of uncertainty measures will assist the end-user in making more informed decisions. In this study, we explore and evaluate a score developed during the BraTS 2019-2020 task on uncertainty quantification (QU-BraTS), and designed to assess and rank uncertainty estimates for brain tumor multi-compartment segmentation. This score (1) rewards uncertainty estimates that produce high confidence in correct assertions, and those that assign low confidence levels at incorrect assertions, and (2) penalizes uncertainty measures that lead to a higher percentages of under-confident correct assertions. We further benchmark the segmentation uncertainties generated by 14 independent participating teams of QU-BraTS 2020, all of which also participated in the main BraTS segmentation task. Overall, our findings confirm the importance and complementary value that uncertainty estimates provide to segmentation algorithms, and hence highlight the need for uncertainty quantification in medical image analyses. Our evaluation code is made publicly available at https://github.com/RagMeh11/QU-BraTS
  •  
6.
  • Miethke, Marcus, et al. (author)
  • Towards the sustainable discovery and development of new antibiotics
  • 2021
  • In: Nature Reviews Chemistry. - : Springer Nature. - 2397-3358. ; 5:10, s. 726-749
  • Research review (peer-reviewed)abstract
    • An ever-increasing demand for novel antimicrobials to treat life-threatening infections caused by the global spread of multidrug-resistant bacterial pathogens stands in stark contrast to the current level of investment in their development, particularly in the fields of natural-product-derived and synthetic small molecules. New agents displaying innovative chemistry and modes of action are desperately needed worldwide to tackle the public health menace posed by antimicrobial resistance. Here, our consortium presents a strategic blueprint to substantially improve our ability to discover and develop new antibiotics. We propose both short-term and long-term solutions to overcome the most urgent limitations in the various sectors of research and funding, aiming to bridge the gap between academic, industrial and political stakeholders, and to unite interdisciplinary expertise in order to efficiently fuel the translational pipeline for the benefit of future generations.
  •  
7.
  •  
8.
  • Ntalla, Ioanna, et al. (author)
  • Multi-ancestry GWAS of the electrocardiographic PR interval identifies 202 loci underlying cardiac conduction
  • 2020
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 11:1
  • Journal article (peer-reviewed)abstract
    • The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular mortality. Here we report a multi-ancestry (N=293,051) genome-wide association meta-analysis for the PR interval, discovering 202 loci of which 141 have not previously been reported. Variants at identified loci increase the percentage of heritability explained, from 33.5% to 62.6%. We observe enrichment for cardiac muscle developmental/contractile and cytoskeletal genes, highlighting key regulation processes for atrioventricular conduction. Additionally, 8 loci not previously reported harbor genes underlying inherited arrhythmic syndromes and/or cardiomyopathies suggesting a role for these genes in cardiovascular pathology in the general population. We show that polygenic predisposition to PR interval duration is an endophenotype for cardiovascular disease, including distal conduction disease, AF, and atrioventricular pre-excitation. These findings advance our understanding of the polygenic basis of cardiac conduction, and the genetic relationship between PR interval duration and cardiovascular disease. On the electrocardiogram, the PR interval reflects conduction from the atria to ventricles and also serves as risk indicator of cardiovascular morbidity and mortality. Here, the authors perform genome-wide meta-analyses for PR interval in multiple ancestries and identify 141 previously unreported genetic loci.
  •  
9.
  • Schunk, Stefan J., et al. (author)
  • Genetically determined NLRP3 inflammasome activation associates with systemic inflammation and cardiovascular mortality
  • 2021
  • In: European Heart Journal. - : Oxford University Press. - 0195-668X .- 1522-9645. ; 42:18, s. 1742-1756
  • Journal article (peer-reviewed)abstract
    • AimsInflammation plays an important role in cardiovascular disease (CVD) development. The NOD-like receptor protein-3 (NLRP3) inflammasome contributes to the development of atherosclerosis in animal models. Components of the NLRP3 inflammasome pathway such as interleukin-1β can therapeutically be targeted. Associations of genetically determined inflammasome-mediated systemic inflammation with CVD and mortality in humans are unknown.Methods and resultsWe explored the association of genetic NLRP3 variants with prevalent CVD and cardiovascular mortality in 538 167 subjects on the individual participant level in an explorative gene-centric approach without performing multiple testing. Functional relevance of single-nucleotide polymorphisms on NLRP3 inflammasome activation has been evaluated in monocyte-enriched peripheral blood mononuclear cells (PBMCs). Genetic analyses identified the highly prevalent (minor allele frequency 39.9%) intronic NLRP3 variant rs10754555 to affect NLRP3 gene expression. rs10754555 carriers showed significantly higher C-reactive protein and serum amyloid A plasma levels. Carriers of the G allele showed higher NLRP3 inflammasome activation in isolated human PBMCs. In carriers of the rs10754555 variant, the prevalence of coronary artery disease was significantly higher as compared to non-carriers with a significant interaction between rs10754555 and age. Importantly, rs10754555 carriers had significantly higher risk for cardiovascular mortality during follow-up. Inflammasome inducers (e.g. urate, triglycerides, apolipoprotein C3) modulated the association between rs10754555 and mortality.ConclusionThe NLRP3 intronic variant rs10754555 is associated with increased systemic inflammation, inflammasome activation, prevalent coronary artery disease, and mortality. This study provides evidence for a substantial role of genetically driven systemic inflammation in CVD and highlights the NLRP3 inflammasome as a therapeutic target.
  •  
10.
  • Stenegren, Marcus, 1986-, et al. (author)
  • Insights on symbiotic diatom diazotroph associations in the South China Sea by targeted microarray analysis of three symbiont strains
  • Other publication (other academic/artistic)abstract
    • Three heterocystous cyanobacterial strains (two Richelia intracellularis: RintHH01, RintRC01, Calothrix rhizosoleniae: CalSC01) are known to form highly specific, intimate associations with several lineages of diatoms. Collectively these symbioses are unique since the cellular location varies from internal, partially integrated, and fully external; hence the immediate environment of the symbiont differs. We investigated the environmental gene expression levels of the three strains using a targeted mRNA microarray comprised of 748 genes on environmental samples collected in the South China Sea. Approximately half of the total genes (47%, 354 of the 748 genes) were expressed above background. The most highly transcribed genes were involved in photosynthesis, N2 fixation and potassium homeostasis, and strain differences were identifiable. The most important environmental parameters on the symbiont gene expression levels were fluorescence, temperature and beam transmission. However, salinity and oxygen impacted gene expression levels of one symbiont strain, RintHH01 differently (positively), possibly due to its different cellular location. Our results suggest that differences in gene expression patterns and environmental conditions influence the three closely related symbiont strains, and are likely related to their cellular location in their respective host diatoms.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 14
Type of publication
journal article (9)
reports (1)
other publication (1)
conference paper (1)
doctoral thesis (1)
research review (1)
show more...
show less...
Type of content
peer-reviewed (11)
other academic/artistic (3)
Author/Editor
Franke, Barbara (3)
Ching, Christopher R ... (3)
Agartz, Ingrid (3)
Akudjedu, Theophilus ... (3)
Alnæs, Dag (3)
Brouwer, Rachel M (3)
show more...
Canales-Rodríguez, E ... (3)
Cannon, Dara M (3)
Sim, Kang (3)
McDonald, Colm (3)
Pomarol-Clotet, Edit ... (3)
Radua, Joaquim (3)
Salvador, Raymond (3)
Sarró, Salvador (3)
Thomopoulos, Sophia ... (3)
Westlye, Lars T (3)
Thompson, Paul M (3)
Andreassen, Ole A (3)
Wang, Lei (3)
Aghajani, Moji (3)
Veer, Ilya M. (3)
de Geus, Eco J. C. (3)
Martin, Nicholas G. (3)
Boomsma, Dorret I. (3)
Heslenfeld, Dirk J. (3)
Bertolino, Alessandr ... (3)
Di Giorgio, Annabell ... (3)
Pergola, Giulio (3)
Reif, Andreas (3)
Wang, Yang (3)
Mataix-Cols, David (3)
Nyberg, Lars, 1966- (3)
Trollor, Julian N. (3)
Asherson, Philip (3)
Banaschewski, Tobias (3)
Menchón, José M. (3)
Jahanshad, Neda (3)
Veltman, Dick J (3)
Stein, Dan J (3)
Fouche, Jean-Paul (3)
Lochner, Christine (3)
Sachdev, Perminder S ... (3)
Dima, Danai (3)
Gotlib, Ian H. (3)
Harrison, Ben J. (3)
Portella, Maria J. (3)
Sacchet, Matthew D. (3)
Wittfeld, Katharina (3)
Wright, Margaret J. (3)
Brodaty, Henry (3)
show less...
University
Uppsala University (8)
Umeå University (4)
Lund University (4)
Karolinska Institutet (3)
Royal Institute of Technology (2)
Stockholm University (1)
show more...
Malmö University (1)
show less...
Language
English (13)
Swedish (1)
Research subject (UKÄ/SCB)
Medical and Health Sciences (8)
Natural sciences (5)
Engineering and Technology (1)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view