SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Weiss Gregor) "

Search: WFRF:(Weiss Gregor)

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bavdek, Andrej, et al. (author)
  • Sterol and pH interdependence in the binding, oligomerization, and pore formation of Listeriolysin O.
  • 2007
  • In: Biochemistry. - : American Chemical Society (ACS). - 0006-2960 .- 1520-4995. ; 46:14, s. 4425-4437
  • Journal article (peer-reviewed)abstract
    • Listeriolysin O (LLO) is the most important virulence factor of the intracellular pathogen Listeria monocytogenes. Its main task is to enable escape of bacteria from the phagosomal vacuole into the cytoplasm. LLO belongs to the cholesterol-dependent cytolysin (CDC) family but differs from other members, as it exhibits optimal activity at low pH. Its pore forming ability at higher pH values has been largely disregarded in Listeria pathogenesis. Here we show that high cholesterol concentrations in the membrane restore the low activity of LLO at high pH values. LLO binds to lipid membranes, at physiological or even slightly basic pH values, in a cholesterol-dependent fashion. Binding, insertion into lipid monolayers, and permeabilization of calcein-loaded liposomes are maximal above approximately 35 mol % cholesterol, a concentration range typically found in lipid rafts. The narrow transition region of cholesterol concentration separating low and high activity indicates that cholesterol not only allows the binding of LLO to membranes but also affects other steps in pore formation. We were able to detect some of these by surface plasmon resonance-based assays. In particular, we show that LLO recognition of cholesterol is determined by the most exposed 3beta-hydroxy group of cholesterol. In addition, LLO binds and permeabilizes J774 cells and human erythrocytes in a cholesterol-dependent fashion at physiological or slightly basic pH values. The results clearly show that LLO activity at physiological pH cannot be neglected and that its action at sites distal to cell entry may have important physiological consequences for Listeria pathogenesis.
  •  
2.
  • König, Julia, 1983-, et al. (author)
  • Amnion-derived mesenchymal stromal cells show angiogenic properties but resist differentiation into mature endothelial cells
  • 2012
  • In: Stem Cells and Development. - Rochelle, USA : Mary Ann Liebert. - 1547-3287 .- 1557-8534. ; 21:8, s. 1309-1320
  • Journal article (peer-reviewed)abstract
    • Mesenchymal stromal cells derived from the human amnion (hAMSC) currently play an important role in stem cell research, as they are multipotent cells that can be isolated using noninvasive methods and are immunologically tolerated in vivo. The objective of this study was to evaluate their endothelial differentiation potential with regard to a possible therapeutic use in vascular diseases. hAMSC were isolated from human term placentas and cultured in Dulbecco's modified Eagle's medium (DMEM) (non-induced hAMSC) or endothelial growth medium (EGM-2) (induced hAMSC). Induced hAMSC changed their fibroblast-like toward an endothelial-like morphology, and were able to take up acetylated low-density lipoprotein and form endothelial-like networks in the Matrigel assay. However, they did not express the mature endothelial cell markers von Willebrand factor and vascular endothelial-cadherin. Gene expression analysis revealed that induced hAMSC significantly downregulated pro-angiogenic genes such as tenascin C, Tie-2, vascular endothelial growth factor A (VEGF-A), CD146, and fibroblast growth factor 2 (FGF-2), whereas they significantly upregulated anti-angiogenic genes such as serpinF1, sprouty1, and angioarrestin. Analysis of protein expression confirmed the downregulation of FGF-2 and Tie-2 (27%±8% and 13%±1% of non-induced cells, respectively) and upregulation of the anti-angiogenic protein endostatin (226%±4%). Conditioned media collected from hAMSC enhanced viability of endothelial cells and had a stabilizing effect on endothelial network formation as shown by lactate dehydrogenase and Matrigel assay, respectively. In summary, endothelial induced hAMSC acquired some angiogenic properties but resisted undergoing a complete differentiation into mature endothelial cells by upregulation of anti-angiogenic factors. Nevertheless, they had a survival-enhancing effect on endothelial cells that might be useful in a variety of cell therapy or tissue-engineering approaches.
  •  
3.
  • König, Julia, et al. (author)
  • Placental Mesenchymal Stromal Cells Derived from Blood Vessels or Avascular Tissues : What Is the Better Choice to Support Endothelial Cell Function?
  • 2014
  • In: Stem Cells and Development. - : Mary Ann Liebert Inc. - 1547-3287 .- 1557-8534. ; 24:1, s. 115-131
  • Journal article (peer-reviewed)abstract
    • Mesenchymal stromal cells (MSCs) are promising tools for therapeutic revascularization of ischemic tissues and for support of vessel formation in engineered tissue constructs. Recently, we could show that avascular-derived MSCs from placental amnion release soluble factors that exhibit survival-enhancing effects on endothelial cells (ECs). We hypothesize that MSCs derived from placental blood vessels might have even more potent angiogenic effects. Therefore, we isolated and characterized MSCs from placental chorionic blood vessels (bv-MSCs) and tested their angiogenic potential in comparison to amnion-derived avascular MSCs (av-MSCs). bv-MSCs express a very similar surface marker profile compared with av-MSCs and could be differentiated toward the adipogenic and osteogenic lineages. bv-MSCs exert immunosuppressive properties on peripheral blood mononuclear cells, suggesting that they are suitable for cell transplantation settings. Conditioned medium (Cdm) from av-MSCs and bv-MSCs significantly enhanced EC viability, whereas only Cdm from bv-MSCs significantly increased EC migration and network formation (Matrigel assay). Angiogenesis array analysis of av- and bv-MSC-Cdm revealed a similar secretion pattern of angiogenic factors, including angiogenin, interleukins-6 and -8, and tissue inhibitors of matrix metalloproteinase-1 and 2. Enzyme-linked immunosorbent assay analysis showed that, in contrast to av-MSCs, bv-MSCs secreted vascular endothelial growth factor. In direct coculture with bv-MSCs, ECs showed a significantly increased formation of vessel-like structures compared with av-MSCs. With regard to therapeutic treatment, bv-MSCs and particularly their Cdm might be valuable to stimulate angiogenesis especially in ischemic tissues. av-MSCs and their Cdm could be beneficial in conditions when it is required to promote the survival and stabilization of blood vessels without the risk of unmeant angiogenesis.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view