SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Welearegay Tesfalem Geremariam) "

Search: WFRF:(Welearegay Tesfalem Geremariam)

  • Result 1-9 of 9
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Durán-Acevedo, Cristhian Manuel, et al. (author)
  • Exhaled breath analysis for gastric cancer diagnosis in Colombian patients.
  • 2018
  • In: Oncotarget. - : Impact Journals, LLC. - 1949-2553. ; 9:48, s. 28805-28817
  • Journal article (peer-reviewed)abstract
    • We present here the first study that directly correlates gastric cancer (GC) with specific biomarkers in the exhaled breath composition on a South American population, which registers one of the highest global incidence rates of gastric affections. Moreover, we demonstrate a novel solid state sensor that predicts correct GC diagnosis with 97% accuracy. Alveolar breath samples of 30 volunteers (patients diagnosed with gastric cancer and a controls group formed of patients diagnosed with other gastric diseases) were collected and analyzed by gas-chromatography/mass-spectrometry (GC-MS) and with an innovative chemical gas sensor based on gold nanoparticles (AuNP) functionalized with octadecylamine ligands. Our GC-MS analyses identified 6 volatile organic compounds that showed statistically significant differences between the cancer patients and the controls group. These compounds were different from those identified in previous studied performed on other populations with high incidence rates of this malady, such as China (representative for Eastern Asia region) and Latvia (representative for Baltic States), attributable to lifestyle, alimentation and genetics differences. A classification model based on principal component analysis of our sensor data responses to the breath samples yielded 97% accuracy, 100% sensitivity and 93% specificity. Our results suggest a new and non-intrusive methodology for early diagnosis of gastric cancer that may be deployed in regions lacking well-developed health care systems as a prediagnosis test for selecting the patients that should undergo deeper investigations (e.g., endoscopy and biopsy).
  •  
2.
  • Geremariam Welearegay, Tesfalem, et al. (author)
  • Diagnosis of Human Echinococcosis via Exhaled Breath Analysis : A Promise for Rapid Diagnosis of Infectious Diseases Caused by Helminths
  • 2019
  • In: Journal of Infectious Diseases. - : Oxford University Press (OUP). - 0022-1899 .- 1537-6613. ; 219:1, s. 101-109
  • Journal article (peer-reviewed)abstract
    • Background: Human echinococcosis is a neglected infectious disease affecting more than 1 million people globally. Its diagnosis is expensive and difficult because of lack of adequate resources in low-resource locations, where most cases occur.Methods: A group of volunteers diagnosed with the 2 main types of echinococcosis and corresponding control groups were recruited from hospitals in Tunisia (32 patients with cystic echinococcosis and 43 controls) and Poland (16 patients with alveolar echinococcosis and 8 controls). Breath samples were collected from all patients and analyzed by gas chromatography coupled to mass spectrometry, and a specifically developed electronic nose system.Results: The chemical analysis revealed statistically different concentrations of 2 compounds in the breath of patients with cystic echinococcosis compared to controls, and statistically different concentrations of 7 compounds in the breath of patients with alveolar echinococcosis compared to controls. The discrimination accuracy achieved by the electronic nose system was 100% for cystic echinococcosis and 92.9% for alveolar echinococcosis, while the discrimination accuracy between these 2 patient groups was 92.1%.Conclusion: Here we advocate a noninvasive, fast, easy-to-operate and nonexpensive diagnostic tool for the diagnosis of human echinococcosis disease through exhaled breath analysis, suitable for early diagnosis and population screening.
  •  
3.
  • Geremariam Welearegay, Tesfalem, et al. (author)
  • Fabrication and characterisation of ligand-functionalised ultrapure monodispersed metal nanoparticle nanoassemblies employing advanced gas deposition technique
  • 2018
  • In: Nanotechnology. - : IOP PUBLISHING LTD. - 0957-4484 .- 1361-6528. ; 29:6
  • Journal article (peer-reviewed)abstract
    • Here, we report for the first time the fabrication of ligand-functionalised ultrapure monodispersed metal nanoparticles (Au, Cu, and Pt) from their pure metal precursors using the advanced gas deposition technique. The experimental conditions during nanoparticle formation were adjusted in order to obtain ultrafine isolated nanoparticles on different substrates. The morphology and surface analysis of the as-deposited metal nanoparticles were investigated using scanning electron microscopy, x-ray diffraction and Fourier transform infra-red spectroscopy, which demonstrated the formation of highly ordered pure crystalline nanoparticles with a relatively uniform size distribution of similar to 10 nm (Au), similar to 4 nm (Cu) and similar to 3 nm (Pt), respectively. A broad range of organic ligands containing thiol or amine functional groups were attached to the nanoparticles to form continuous networks of nanoparticle-ligand nanoassemblies, which were characterised by scanning electron microscopy and x-ray photoelectron spectroscopy. The electrical resistance of the functional nanoassemblies deposited in the gap spacing of two microfabricated parallel Au electrodes patterned on silicon substrates ranged between tens of k Omega and tens of M Omega, which is suitable for use in many applications including (bio)chemical sensors, surface-enhanced Raman spectroscopy and molecular electronic rectifiers.
  •  
4.
  • Ionescu, Radu, et al. (author)
  • Fabrication of ultra-pure gold nanoparticles capped with dodecanethiol for Schottky-diode chemical gas sensing devices
  • 2017
  • In: Sensors and actuators. B, Chemical. - : Elsevier BV. - 0925-4005 .- 1873-3077. ; 239, s. 455-461
  • Journal article (peer-reviewed)abstract
    • Ultra-pure monolayer-capped gold nanoparticles for chemical gas sensing devices were prepared by a novel two-step process: a physical vapour deposition technique was first employed to make dispersed ultra-pure size-controlled gold nanoparticles, and this step was followed by a coating process for functionalization of the gold nanoparticles with an organic ligand, specifically dodecanethiol. X-ray photoelectron spectroscopy proved that the nano-assemblies had high purity. Chemical sensing devices based on these nano-assemblies showed Schottky-diode behaviour. We believe this is the first observation of Schottky-diodes fabricated from nanomaterials based on metallic nanoparticles. Gas sensing experiments demonstrated that these devices were suitable for detecting volatile organic compounds.
  •  
5.
  • Kwiatkowski, Andrzej, et al. (author)
  • Assessment of Electronic Sensing Techniques for the Rapid Identification of Alveolar Echinococcosis through Exhaled Breath Analysis
  • 2020
  • In: Sensors. - : MDPI AG. - 1424-8220. ; 20:9
  • Journal article (peer-reviewed)abstract
    • Here we present a proof-of-concept study showing the potential of a chemical gas sensors system to identify the patients with alveolar echinococcosis disease through exhaled breath analysis. The sensors system employed comprised an array of three commercial gas sensors and a custom gas sensor based on WO3 nanowires doped with gold nanoparticles, optimized for the measurement of common breath volatile organic compounds. The measurement setup was designed for the concomitant measurement of both sensors DC resistance and AC fluctuations during breath samples exposure. Discriminant Function Analysis classification models were built with features extracted from sensors responses, and the discrimination of alveolar echinococcosis was estimated through bootstrap validation. The commercial sensor that detects gases such as alkane derivatives and ethanol, associated with lipid peroxidation and intestinal gut flora, provided the best classification (63.4% success rate, 66.3% sensitivity and 54.6% specificity) when sensors’ responses were individually analyzed, while the model built with the AC features extracted from the responses of the cross-reactive sensors array yielded 90.2% classification success rate, 93.6% sensitivity and 79.4% specificity. This result paves the way for the development of a noninvasive, easy to use, fast and inexpensive diagnostic test for alveolar echinococcosis diagnosis at an early stage, when curative treatment can be applied to the patients.
  •  
6.
  • Nol, Pauline, et al. (author)
  • Evaluation of Volatile Organic Compounds Obtained from Breath and Feces to Detect Mycobacterium tuberculosis Complex in Wild Boar (Sus scrofa) in Donana National Park, Spain
  • 2020
  • In: Pathogens. - : MDPI AG. - 2076-0817. ; 9:5
  • Journal article (peer-reviewed)abstract
    • The presence of Mycobacterium tuberculosis complex (MTBC) in wild swine, such as in wild boar (Sus scrofa) in Eurasia, is cause for serious concern. Development of accurate, efficient, and noninvasive methods to detect MTBC in wild swine would be highly beneficial to surveillance and disease management efforts in affected populations. Here, we describe the first report of identification of volatile organic compounds (VOC) obtained from the breath and feces of wild boar to distinguish between MTBC-positive and MTBC-negative boar. We analyzed breath and fecal VOC collected from 15 MTBC-positive and 18 MTBC-negative wild boar in Donana National Park in Southeast Spain. Analyses were divided into three age classes, namely, adults (>2 years), sub-adults (12-24 months), and juveniles (<12 months). We identified significant compounds by applying the two-tailed statistical t-test for two samples assuming unequal variance, with an alpha value of 0.05. One statistically significant VOC was identified in breath samples from adult wild boar and 14 were identified in breath samples from juvenile wild boar. One statistically significant VOC was identified in fecal samples collected from sub-adult wild boar and three were identified in fecal samples from juvenile wild boar. In addition, discriminant function analysis (DFA) was used to build classification models for MTBC prediction in juvenile animals. Using DFA, we were able to distinguish between MTBC-positive juvenile wild boar and MTBC-negative juvenile wild boar using breath VOC or fecal VOC. Based on our results, further research is warranted and should be performed using larger sample sizes, as well as wild boar from various geographic locations, to verify these compounds as biomarkers for MTBC infection in this species. This new approach to detect MTBC infection in free-ranging wild boar potentially comprises a reliable and efficient screening tool for surveillance in animal populations.
  •  
7.
  • Saidi, Tarik, et al. (author)
  • Exhaled breath gas sensing using pristine and functionalized WO3 nanowire sensors enhanced by UV-light irradiation
  • 2018
  • In: Sensors and actuators. B, Chemical. - : Elsevier BV. - 0925-4005 .- 1873-3077. ; 273, s. 1719-1729
  • Journal article (peer-reviewed)abstract
    • The development of advanced metal-oxide-semiconductor sensing technologies for the detection of Volatile Organic Compounds (VOCs) present in exhaled breath is of great importance for non-invasive, cheap and fast medical diagnostics. Our experimental studies investigate the effects of operating temperature selection and UV-light irradiation on improving the response of WO3 nanowire sensors towards exhaled breath exposure. Herein, six WO3 nanowire sensors (both pristine and doped with a range of metal nanoparticles such as Pt, Au, Au/Pt, Ni and Fe) were synthesised via Aerosol-Assisted Chemical Vapour Deposition (AACVD) and characterized by means of Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray (EDX-ray). Breath measurements were performed in the dark and under UV-light irradiation at various sensor operating temperatures. The results demonstrate that UV-light irradiation combined with the optimisation of the sensors' operating temperature can greatly enhance the sensors' responses towards breath exposure.
  •  
8.
  • Saidi, Tarik, et al. (author)
  • Non-invasive prediction of lung cancer histological types through exhaled breath analysis by UV-irradiated electronic nose and GC/QTOF/MS
  • 2020
  • In: Sensors and actuators. B, Chemical. - : Elsevier BV. - 0925-4005 .- 1873-3077. ; 311
  • Journal article (peer-reviewed)abstract
    • Lung cancer (LC) is one of the most lethal diseases from the last decades. Accurate diagnosis of LC histology could lead to the prescription of personalized medical treatment to the affected subjects, which could reduce the mortality rate. We present here an experimental study performed in the pulmonology units of three hospitals from Morocco to non-invasively detect LC and predict LC histology via the analysis of the volatile organic compounds (VOCs) emitted through breathing. Gas chromatography coupled to a quadrupole time-of-flight mass spectrometer (GC/QTOF/MS) employed to detect the breath VOCs, revealed 30 discriminative VOCs in the breath of healthy subjects and LC patients; among them, 4 unique breath VOCs were found for the first time in the breath of LC patients, and could be used as new biomarkers for future LC diagnosis. Besides, an electronic nose (e-nose) system using a novel sensing technique in breath analysis, based on UV-irradiation of the gas sensors, was employed to characterize the overall composition of the collected breath samples, providing a satisfactory discrimination between the breath patterns of LC patients and healthy subjects. Importantly, the e-nose could further discriminate with high accuracy between the two types of LC (non-small cell LC and small cell LC), as well as between two of the major subtypes of non-small cell LC, namely squamous cell carcinoma (SCC) and adenocarcinoma (ADC). The reported results prove that breath analysis with chemical gas sensors and analytical techniques can provided an accurate mean for the non-invasive diagnosis of LC and LC histology.
  •  
9.
  • Welearegay, Tesfalem Geremariam, et al. (author)
  • Ligand-Capped Ultrapure Metal Nanoparticle Sensors for the Detection of Cutaneous Leishmaniasis Disease in Exhaled Breath
  • 2018
  • In: ACS Sensors. - : American Chemical Society (ACS). - 2379-3694. ; 3:12, s. 2532-2540
  • Journal article (peer-reviewed)abstract
    • Human cutaneous leishmaniasis, although designated as one of the most neglected tropical diseases, remains underestimated due to its misdiagnosis. The diagnosis is mainly based on the microscopic detection of amastigote forms, isolation of the parasite, or the detection of LeishmaniaDNA, in addition to its differential clinical characterization; these tools are not always available in routine daily practice, and they are expensive and time-consuming. Here, we present a simple-to-use, noninvasive approach for human cutaneous leishmaniasis diagnosis, which is based on the analysis of volatile organic compounds in exhaled breath with an array of specifically designed chemical gas sensors. The study was realized on a group of n = 28 volunteers diagnosed with human cutaneous leishmaniasis and a group of n = 32 healthy controls, recruited in various sites from Tunisia, an endemic country of the disease. The classification success rate of human cutaneous leishmaniasis patients achieved by our sensors test was 98.2% accuracy, 96.4% sensitivity, and 100% specificity. Remarkably, one of the sensors, based on CuNPs functionalized with 2-mercaptobenzoxazole, yielded 100% accuracy, 100% sensitivity, and 100% specificity for human cutaneous leishmaniasis discrimination. While AuNPs have been the most extensively used in metal nanoparticle–ligand sensing films for breath sensing, our results demonstrate that chemical sensors based on ligand-capped CuNPs also hold great potential for breath volatile organic compounds detection. Additionally, the chemical analysis of the breath samples with gas chromatography coupled to mass spectrometry identified nine putative breath biomarkers for human cutaneous leishmaniasis.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-9 of 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view