SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Wheeler Julia) "

Search: WFRF:(Wheeler Julia)

  • Result 1-10 of 12
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ademuyiwa, Adesoji O., et al. (author)
  • Determinants of morbidity and mortality following emergency abdominal surgery in children in low-income and middle-income countries
  • 2016
  • In: BMJ Global Health. - : BMJ Publishing Group Ltd. - 2059-7908. ; 1:4
  • Journal article (peer-reviewed)abstract
    • Background: Child health is a key priority on the global health agenda, yet the provision of essential and emergency surgery in children is patchy in resource-poor regions. This study was aimed to determine the mortality risk for emergency abdominal paediatric surgery in low-income countries globally.Methods: Multicentre, international, prospective, cohort study. Self-selected surgical units performing emergency abdominal surgery submitted prespecified data for consecutive children aged <16 years during a 2-week period between July and December 2014. The United Nation's Human Development Index (HDI) was used to stratify countries. The main outcome measure was 30-day postoperative mortality, analysed by multilevel logistic regression.Results: This study included 1409 patients from 253 centres in 43 countries; 282 children were under 2 years of age. Among them, 265 (18.8%) were from low-HDI, 450 (31.9%) from middle-HDI and 694 (49.3%) from high-HDI countries. The most common operations performed were appendectomy, small bowel resection, pyloromyotomy and correction of intussusception. After adjustment for patient and hospital risk factors, child mortality at 30 days was significantly higher in low-HDI (adjusted OR 7.14 (95% CI 2.52 to 20.23), p<0.001) and middle-HDI (4.42 (1.44 to 13.56), p=0.009) countries compared with high-HDI countries, translating to 40 excess deaths per 1000 procedures performed.Conclusions: Adjusted mortality in children following emergency abdominal surgery may be as high as 7 times greater in low-HDI and middle-HDI countries compared with high-HDI countries. Effective provision of emergency essential surgery should be a key priority for global child health agendas.
  •  
2.
  • Carland, Corinne, et al. (author)
  • Proteomic analysis of 92 circulating proteins and their effects in cardiometabolic diseases
  • 2023
  • In: Clinical Proteomics. - : BMC. - 1542-6416 .- 1559-0275. ; 20:1
  • Journal article (peer-reviewed)abstract
    • Background: Human plasma contains a wide variety of circulating proteins. These proteins can be important clinical biomarkers in disease and also possible drug targets. Large scale genomics studies of circulating proteins can identify genetic variants that lead to relative protein abundance.Methods: We conducted a meta-analysis on genome-wide association studies of autosomal chromosomes in 22,997 individuals of primarily European ancestry across 12 cohorts to identify protein quantitative trait loci (pQTL) for 92 cardiometabolic associated plasma proteins.Results: We identified 503 (337 cis and 166 trans) conditionally independent pQTLs, including several novel variants not reported in the literature. We conducted a sex-stratified analysis and found that 118 (23.5%) of pQTLs demonstrated heterogeneity between sexes. The direction of effect was preserved but there were differences in effect size and significance. Additionally, we annotate trans-pQTLs with nearest genes and report plausible biological relationships. Using Mendelian randomization, we identified causal associations for 18 proteins across 19 phenotypes, of which 10 have additional genetic colocalization evidence. We highlight proteins associated with a constellation of cardiometabolic traits including angiopoietin-related protein 7 (ANGPTL7) and Semaphorin 3F (SEMA3F).Conclusion: Through large-scale analysis of protein quantitative trait loci, we provide a comprehensive overview of common variants associated with plasma proteins. We highlight possible biological relationships which may serve as a basis for further investigation into possible causal roles in cardiometabolic diseases.
  •  
3.
  • Cuni-Sanchez, Aida, et al. (author)
  • High aboveground carbon stock of African tropical montane forests
  • 2021
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 596:7873, s. 536-542
  • Journal article (peer-reviewed)abstract
    • Tropical forests store 40–50per cent of terrestrial vegetation carbon. However, spatial variations in aboveground live tree biomass carbon (AGC) stocks remain poorly understood, in particular in tropical montane forests. Owing to climatic and soil changes with increasing elevation, AGC stocks are lower in tropical montane forests compared with lowland forests. Here we assemble and analyse a dataset of structurally intact old-growth forests (AfriMont) spanning 44 montane sites in 12 African countries. We find that montane sites in the AfriMont plot network have a mean AGC stock of 149.4megagrams of carbon per hectare (95% confidence interval 137.1–164.2), which is comparable to lowland forests in the African Tropical Rainforest Observation Network4 and about 70per cent and 32per cent higher than averages from plot networks in montane and lowland forests in the Neotropics, respectively. Notably, our results are two-thirds higher than the Intergovernmental Panel on Climate Change default values for these forests in Africa8. We find that the low stem density and high abundance of large trees of African lowland forests is mirrored in the montane forests sampled. This carbon store is endangered: we estimate that 0.8 million hectares of old-growth African montane forest have been lost since 2000. We provide country-specific montane forest AGC stock estimates modelled from our plot network to helpto guide forest conservation and reforestation interventions. Our findings highlight the need for conserving these biodiverse and carbon-rich ecosystems.
  •  
4.
  • Hoffmann, Julia K., et al. (author)
  • Who Still Gets Ligated? Reasons for Persistence of Surgical Ligation of the Patent Ductus Arteriosus Following Availability of Transcatheter Device Occlusion for Premature Neonates
  • 2024
  • In: Journal of cardiovascular development and disease. - 2308-3425. ; 11:5
  • Journal article (peer-reviewed)abstract
    • (1) Background: To identify reasons for the persistence of surgical ligation of the patent ductus arteriosus (PDA) in premature infants after the 2019 Food and Drug Administration (FDA) approval of transcatheter device closure; (2) Methods: We performed a 10-year (2014–2023) single-institution retrospective study of premature infants (<37 weeks) and compared clinical characteristics and neonatal morbidities between neonates that underwent surgical ligation before (epoch 1) and after (epoch 2) FDA approval of transcatheter closure; (3) Results: We identified 120 premature infants that underwent surgical ligation (n = 94 before, n = 26 after FDA approval). Unfavorable PDA morphology, active infection, and recent abdominal pathology were the most common reasons for surgical ligation over device occlusion in epoch 2. There were no differences in demographics, age at closure, or outcomes between infants who received surgical ligation in the two epochs; (4) Conclusions: Despite increasing trends for transcatheter PDA closure in premature infants, surgical ligation persists due to unfavorable ductal morphology, active infection, or abdominal pathology.
  •  
5.
  • Karlsson, Linn, et al. (author)
  • Physical and Chemical Properties of Cloud Droplet Residuals and Aerosol Particles During the Arctic Ocean 2018 Expedition
  • 2022
  • In: Journal of Geophysical Research - Atmospheres. - 2169-897X .- 2169-8996. ; 127:11
  • Journal article (peer-reviewed)abstract
    • Detailed knowledge of the physical and chemical properties and sources of particles that form clouds is especially important in pristine areas like the Arctic, where particle concentrations are often low and observations are sparse. Here, we present in situ cloud and aerosol measurements from the central Arctic Ocean in August–September 2018 combined with air parcel source analysis. We provide direct experimental evidence that Aitken mode particles (particles with diameters ≲70 nm) significantly contribute to cloud condensation nuclei (CCN) or cloud droplet residuals, especially after the freeze-up of the sea ice in the transition toward fall. These Aitken mode particles were associated with air that spent more time over the pack ice, while size distributions dominated by accumulation mode particles (particles with diameters ≳70 nm) showed a stronger contribution of oceanic air and slightly different source regions. This was accompanied by changes in the average chemical composition of the accumulation mode aerosol with an increased relative contribution of organic material toward fall. Addition of aerosol mass due to aqueous-phase chemistry during in-cloud processing was probably small over the pack ice given the fact that we observed very similar particle size distributions in both the whole-air and cloud droplet residual data. These aerosol–cloud interaction observations provide valuable insight into the origin and physical and chemical properties of CCN over the pristine central Arctic Ocean.
  •  
6.
  • Sedlacek, Janosch, et al. (author)
  • Evolutionary potential in the Alpine: trait heritabilities and performance variation of the dwarf willow Salix herbacea from different elevations and microhabitats
  • 2016
  • In: Ecology and Evolution. - : Wiley. - 2045-7758. ; 6:12, s. 3940-3952
  • Journal article (peer-reviewed)abstract
    • Alpine ecosystems are seriously threatened by climate change. One of the key mechanisms by which plants can adapt to changing environmental conditions is through evolutionary change. However, we still know little about the evolutionary potential in wild populations of long-lived alpine plants. Here, we investigated heritabilities of phenological traits, leaf size, and performance traits in natural populations of the long-lived alpine dwarf shrub Salix herbacea using relatedness estimates inferred from SSR (Simple Sequence Repeat) markers. Salix herbacea occurs in early-and late-snowmelt microhabitats (ridges and snowbeds), and we assessed how performance consequences of phenological traits and leaf size differ between these microhabitats in order to infer potential for evolutionary responses. Salix herbacea showed low, but significant, heritabilities of leaf size, clonal and sexual reproduction, and moderate heritabilities of phenological traits. In both microhabitats, we found that larger leaves, longer intervals between snowmelt and leaf expansion, and longer GDD (growing-degree days) until leaf expansion resulted in a stronger increase in the number of stems (clonal reproduction). In snowbeds, clonal reproduction increased with a shorter GDD until flowering, while the opposite was found on ridges. Furthermore, the proportion of flowering stems increased with GDD until flowering in both microhabitats. Our results suggest that the presence of significant heritable variation in morphology and phenology might help S. herbacea to adapt to changing environmental conditions. However, it remains to be seen if the rate of such an evolutionary response can keep pace with the rapid rate of climate change.
  •  
7.
  • Sedlacek, Janosch F., et al. (author)
  • What role do plant-soil interactions play in the habitat suitability and potential range expansion of the alpine dwarf shrub Salix herbacea?
  • 2014
  • In: Basic and Applied Ecology. - : Elsevier BV. - 1439-1791 .- 1618-0089. ; 15:4, s. 305-315
  • Journal article (peer-reviewed)abstract
    • Mountain plants may respond to warming climates by migrating along altitudinal gradients or, because climatic conditions on mountain slopes can be locally very heterogeneous, by migrating to different microhabitats at the same altitude. However, in new environments, plants may also encounter novel soil microbial communities, which might affect their establishment success. Thus, biotic interactions could be a key factor in plant responses to climate change. Here, we investigated the role of plant soil feedback for the establishment success of the alpine dwarf shrub Salix herbacea L. across altitudes and late- and early snowmelt microhabitats. We collected S. herbacea seeds and soil from nine plots on three mountain-slope transects near Davos, Switzerland, and we transplanted seeds and seedlings to substrate inoculated with soil from the same plot or with soils from different microhabitats, altitudes and mountains under greenhouse conditions. We found that, on average, seeds from higher altitudes (2400-2700 m) and late-exposed snowbeds germinated better than seeds from lower altitudes (2200-2300 m) and early-exposed ridges. However, despite these differences in germination, growth was generally higher for plants from low altitudes, and there were no indications for a an home-soil advantage within the current range of S. herbacea. Interestingly, seedlings growing on soil from above the current altitudinal distribution of S. herbacea grew on average less well than on their own soil. Thus, although the lack of a home-soil advantage in the current habitat might be beneficial for S. herbacea in a changing environment, migration to habitats beyond the current altitudinal range might be limited, probably due to missing positive soil-feedback.
  •  
8.
  • Sedlacek, Janosch, et al. (author)
  • The Response of the Alpine Dwarf Shrub Salix herbacea to Altered Snowmelt Timing : Lessons from a Multi-Site Transplant Experiment
  • 2015
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:4
  • Journal article (peer-reviewed)abstract
    • Climate change is altering spring snowmelt patterns in alpine and arctic ecosystems, and these changes may alter plant phenology, growth and reproduction. To predict how alpine plants respond to shifts in snowmelt timing, we need to understand trait plasticity, its effects on growth and reproduction, and the degree to which plants experience a home-site advantage. We tested how the common, long-lived dwarf shrub Salix herbacea responded to changing spring snowmelt time by reciprocally transplanting turfs of S. herbacea between early-exposure ridge and late-exposure snowbed microhabitats. After the transplant, we monitored phenological, morphological and fitness traits, as well as leaf damage, during two growing seasons. Salix herbacea leafed out earlier, but had a longer development time and produced smaller leaves on ridges relative to snowbeds. Longer phenological development times and smaller leaves were associated with reduced sexual reproduction on ridges. On snowbeds, larger leaves and intermediate development times were associated with increased clonal reproduction. Clonal and sexual reproduction showed no response to altered snowmelt time. We found no home-site advantage in terms of sexual and clonal reproduction. Leaf damage probability depended on snowmelt and thus exposure period, but had no short-term effect on fitness traits. We conclude that the studied populations of S. herbacea can respond to shifts in snowmelt by plastic changes in phenology and leaf size, while maintaining levels of clonal and sexual reproduction. The lack of a home-site advantage suggests that S. herbacea may not be adapted to different microhabitats. The studied populations are thus unlikely to react to climate change by rapid adaptation, but their responses will also not be constrained by small-scale local adaptation. In the short term, snowbed plants may persist due to high stem densities. However, in the long term, reduction in leaf size and flowering, a longer phenological development time and increased exposure to damage may decrease overall performance of S. herbacea under earlier snowmelt.
  •  
9.
  •  
10.
  • Weinstock, Joshua S, et al. (author)
  • Aberrant activation of TCL1A promotes stem cell expansion in clonal haematopoiesis.
  • 2023
  • In: Nature. - 1476-4687. ; 616:7958, s. 755-763
  • Journal article (peer-reviewed)abstract
    • Mutations in a diverse set of driver genes increase the fitness of haematopoietic stem cells (HSCs), leading to clonal haematopoiesis1. These lesions are precursors for blood cancers2-6, but the basis of their fitness advantage remains largely unknown, partly owing to a paucity of large cohorts in which the clonal expansion rate has been assessed by longitudinal sampling. Here, to circumvent this limitation, we developed a method to infer the expansion rate from data from a single time point. We applied this method to 5,071 people with clonal haematopoiesis. A genome-wide association study revealed that a common inherited polymorphism in the TCL1A promoter was associated with a slower expansion rate in clonal haematopoiesis overall, but the effect varied by driver gene. Those carrying this protective allele exhibited markedly reduced growth rates or prevalence of clones with driver mutations in TET2, ASXL1, SF3B1 and SRSF2, butthis effect was not seen inclones withdriver mutations in DNMT3A. TCL1A was not expressed in normal or DNMT3A-mutated HSCs, but the introduction of mutations in TET2 or ASXL1 led to the expression of TCL1A protein and the expansion of HSCs in vitro. The protective allele restricted TCL1A expression and expansion of mutant HSCs, as did experimentalknockdown of TCL1A expression. Forced expression of TCL1A promoted the expansion of human HSCs in vitro and mouse HSCs in vivo. Our results indicate that the fitness advantage of several commonly mutated driver genes in clonal haematopoiesis may be mediated by TCL1A activation.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view