SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Whiter D.) "

Search: WFRF:(Whiter D.)

  • Result 1-10 of 13
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Brändström, U., et al. (author)
  • Results from the intercalibration of optical low light calibration sources 2011
  • 2012
  • In: Geoscientific Instrumentation, Methods and Data Systems. - : Copernicus GmbH. - 2193-0856 .- 2193-0864. ; 1:1, s. 43-51
  • Journal article (peer-reviewed)abstract
    • Following the 38th Annual European Meeting onAtmospheric Studies by Optical Methods in Siuntio in Finland,an intercalibration workshop for optical low light calibrationsources was held in Sodankyl¨a, Finland. The mainpurpose of this workshop was to provide a comparable scalefor absolute measurements of aurora and airglow. All sourcesbrought to the intercalibration workshop were compared tothe Fritz Peak reference source using the Lindau CalibrationPhotometer built by Wilhelm Barke and Hans Lauche in1984. The results were compared to several earlier intercalibrationworkshops. It was found that most sources were fairlystable over time, with errors in the range of 5–25 %. To furthervalidate the results, two sources were also intercalibratedat UNIS, Longyearbyen, Svalbard. Preliminary analysis indicatesagreement with the intercalibration in Sodankyl¨a withinabout 15–25 %.
  •  
2.
  • Dahlgren, Hanna, et al. (author)
  • Electrodynamics and energy characteristics of aurora at high resolution by optical methods
  • 2016
  • In: Journal of Geophysical Research - Space Physics. - : American Geophysical Union (AGU). - 2169-9380 .- 2169-9402. ; 121:6, s. 5966-5974
  • Journal article (peer-reviewed)abstract
    • Technological advances leading to improved sensitivity of optical detectors have revealed that aurora contains a richness of dynamic and thin filamentary structures, but the source of the structured emissions is not fully understood. In addition, high-resolution radar data have indicated that thin auroral arcs can be correlated with highly varying and large electric fields, but the detailed picture of the electrodynamics of auroral filaments is yet incomplete. The Auroral Structure and Kinetics (ASK) instrument is a state-of-the-art ground-based instrument designed to investigate these smallest auroral features at very high spatial and temporal resolution, by using three electron multiplying CCDs in parallel for three different narrow spectral regions. ASK is specifically designed to utilize a new optical technique to determine the ionospheric electric fields. By imaging the long-lived O+ line at 732 nm, the plasma flow in the region can be traced, and since the plasma motion is controlled by the electric field, the field strength and direction can be estimated at unprecedented resolution. The method is a powerful tool to investigate the detailed electrodynamics and current systems around the thin auroral filaments. The two other ASK cameras provide information on the precipitation by imaging prompt emissions, and the emission brightness ratio of the two emissions, together with ion chemistry modeling, is used to give information on the energy and energy flux of the precipitating electrons. In this paper, we discuss these measuring techniques and give a few examples of how they are used to reveal the nature and source of fine-scale structuring in the aurora.
  •  
3.
  • Dahlgren, Hanna, et al. (author)
  • Energy and flux variations across thin auroral arcs
  • 2011
  • In: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 29:10, s. 1699-1712
  • Journal article (peer-reviewed)abstract
    • Two discrete auroral arc filaments, with widths of less than 1 km, have been analysed using multi-station, multi-monochromatic optical observations from small and medium field-of-view imagers and the EISCAT radar. The energy and flux of the precipitating electrons, volume emission rates and local electric fields in the ionosphere have been determined at high temporal (up to 30 Hz) and spatial (down to tens of metres) resolution. A new time-dependent inversion model is used to derive energy spectra from EISCAT electron density profiles. The energy and flux are also derived independently from optical emissions combined with ion-chemistry modelling, and a good agreement is found. A robust method to obtain detailed 2-D maps of the average energy and number flux of small scale aurora is presented. The arcs are stretched in the north-south direction, and the lowest energies are found on the western, leading edges of the arcs. The large ionospheric electric fields (250 mV m(-1)) found from tristatic radar measurements are evidence of strong currents associated with the region close to the optical arcs. The different data sets indicate that the arcs appear on the boundaries between regions with different average energy of diffuse precipitation, caused by pitch-angle scattering. The two thin arcs on these boundaries are found to be related to an increase in number flux (and thus increased energy flux) without an increase in energy.
  •  
4.
  • Dahlgren, Hanna, et al. (author)
  • First direct optical observations of plasma flows using afterglow of O+ in discrete aurora
  • 2009
  • In: Journal of Atmospheric and Solar-Terrestrial Physics. - : Elsevier BV. - 1364-6826 .- 1879-1824. ; 71:2, s. 228-238
  • Journal article (peer-reviewed)abstract
    • Imaging of active structured aurora in the forbidden O+ ion line at 732.0 nm provides a possibility of direct observation of plasma drifts in the topside ionosphere. The metastable O+ P-2 state has a radiative lifetime of 5 s, so the oxygen ions can be detected after the precipitation creating them has ceased. The decay time of the O+ emission is studied and modelled with a time-dependent electron transport and ion chemistry model. Four examples are given of O+ afterglow observed with the multi-spectral imager, auroral structure and kinetics (ASK), which was located near Tromso, Norway, in 2006. Estimates are given of drift velocities resulting from the analysis of the afterglow motions. Bulk plasma velocities of 340 and 720 m/s directed eastwards were found for two afterglowing arc filaments, corresponding to southward electric fields of 18 and 40 mV/m, respectively.
  •  
5.
  • Dahlgren, Hanna, 1980-, et al. (author)
  • Morphology and dynamics of aurora at fine scale : first results for the ASK instrument
  • 2008
  • In: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 26:5, s. 1041-1048
  • Journal article (peer-reviewed)abstract
    • The ASK instrument (Auroral Structure and Kinetics) is a narrow field auroral imager, providing simultaneous images of aurora in three different spectral bands at multiple frames per second resolution. The three emission species studied are O-2(+) (5620 angstrom), O+ (7319 angstrom) and O (7774 angstrom). ASK was installed and operated for the first time in an observational campaign on Svalbard, from December 2005 to March 2006. The measurements were supported by data from the Spectrographic Imaging Facility (SIF). The relation between the morphology and dynamics of the visible aurora and its spectral characteristics is studied for selected events from this period. In these events it is found that dynamic aurora is coupled to high energy electron precipitation. By studying the O-2(+)/O intensity ratio we find that some auroral filaments are caused by higher energy precipitation within regions of lower energy precipitation, whereas other filaments are the result of a higher particle flux compared to the surroundings.
  •  
6.
  • Dahlgren, Hanna, 1980-, et al. (author)
  • Using spectral characteristics to interpret auroral imaging in the 731.9 nm 0+ line
  • 2008
  • In: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 26:7, s. 1905-1917
  • Journal article (peer-reviewed)abstract
    • Simultaneous observations were made of dynamic aurora during substorm activity on 26 January 2006 with three high spatial and temporal resolution instruments: the ASK (Auroral Structure and Kinetics) instrument, SIF (Spectrographic Imaging Facility) and ESR (EISCAT Svalbard Radar), all located on Svalbard (78° N, 16.2° E). One of the narrow field of view ASK cameras is designed to detect O+ ion emission at 731.9 nm. From the spectrographic data we have been able to determine the amount of contaminating N2 and OH emission detected in the same filter. This is of great importance to further studies using the ASK instrument, when the O+ ion emission will be used to detect flows and afterglows in active aurora. The ratio of O+ to N2 emission is dependent on the energy spectra of electron precipitation, and was found to be related to changes in the morphology of the small-scale aurora. The ESR measured height profiles of electron densities, which allowed estimates to be made of the energy spectrum of the precipitation during the events studied with optical data from ASK and SIF. It was found that the higher energy precipitation corresponded to discrete and dynamic features, including curls, and low energy precipitation corresponded to auroral signatures that were dominated by rays. The evolution of these changes on time scales of seconds is of importance to theories of auroral acceleration mechanisms.
  •  
7.
  • Frey, H. U., et al. (author)
  • Small and meso-scale properties of a substorm onset auroral arc
  • 2010
  • In: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 115, s. A10209-
  • Journal article (peer-reviewed)abstract
    • We present small and meso-scale properties of a substorm onset arc observed simultaneously by the Reimei and THEMIS satellites together with ground-based observations by the THEMIS GBO system. The optical observations revealed the slow equatorward motion of the growth-phase arc and the development of a much brighter onset arc poleward of it. Both arcs showed the typical particle signature of electrostatic acceleration in an inverted-V structure together with a strong Alfven wave acceleration signature at the poleward edge of the onset arc. Two THEMIS spacecraft encountered earthward flow bursts around the times the expanding optical aurora reached their magnetic footprints in the ionosphere. The particle and field measurements allowed for the reconstruction of the field-aligned current system and the determination of plasma properties in the auroral source region. Auroral arc properties were extracted from the optical and particle measurements and were used to compare measured values to theoretical predictions of the electrodynamic model for the generation of auroral arcs. Good agreement could be reached for the meso-scale arc properties. A qualitative analysis of the internal structuring of the bright onset arc suggests the operation of the tearing instability which provides a 'rope-like' appearance due to advection of the current in the sheared flow across the arc. We also note that for the observed parameters ionospheric conductivity gradients due to electron precipitation will be unstable to the feedback instability in the ionospheric Alfven resonator that can drive structuring in luminosity over the range of scales observed.
  •  
8.
  • Jokiaho, O., et al. (author)
  • AURORAL DIAGNOSTICS FOR POGOLITE ASTROPHYSICAL BALLOON
  • 2009
  • In: PROCEEDINGS OF THE 19TH ESA SYMPOSIUM ON EUROPEAN ROCKET AND BALLOON PROGRAMMES AND RELATED RESEARCH. - : EUROPEAN SPACE AGENCY. - 9789292212353 ; , s. 195-200
  • Conference paper (peer-reviewed)abstract
    • The PoGOLite balloon experiment, to be launched from Kiruna in August 2010 will investigate polarisation of X-rays from astrophysical objects. Auroral emissions in the measured wavelength range enhance the background level for the experiment, but also constitute an interesting object of their own. The state-of-the art PoGOLite instrument will benefit from careful characterisation of aurora, and could provide unique results on the auroral X-ray polarisation. We present the design of the auroral diagnostic package to be flown onboard the PoGOLite balloon. It consists of two photometers and a fluxgate magnetometer. The photometers are equipped with Fabry-Perot etalons, which are scanned in wavelength by tilting, to measure auroral emissions as well as the surrounding background. The fluxgate magnetometer will characterize the auroral electrojet currents (to put observations in context of the sub-storm dynamics), and low frequency waves, which are thought to be responsible for pitch-angle diffusion of trapped high energy electrons.
  •  
9.
  • Schlatter, Nicola Manuel, et al. (author)
  • Auroral ion acoustic wave enhancement observed with a radar interferometer system
  • 2015
  • In: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 33:7, s. 837-844
  • Journal article (peer-reviewed)abstract
    • Measurements of naturally enhanced ion acoustic line (NEIAL) echoes obtained with a five-antenna interferometric imaging radar system are presented. The observations were conducted with the European Incoherent SCATter (EIS-CAT) radar on Svalbard and the EISCAT Aperture Synthesis Imaging receivers (EASI) installed at the radar site. Four baselines of the interferometer are used in the analysis. Based on the coherence estimates derived from the measurements, we show that the enhanced backscattering region is of limited extent in the plane perpendicular to the geomagnetic field. Previously it has been argued that the enhanced backscatter region is limited in size; however, here the first unambiguous observations are presented. The size of the enhanced backscatter region is determined to be less than 900 x 500 m, and at times less than 160m in the direction of the longest antenna separation, assuming the scattering region to have a Gaussian scattering cross section in the plane perpendicular to the geomagnetic field. Using aperture synthesis imaging methods volumetric images of the NEIAL echo are obtained showing the enhanced backscattering region to be aligned with the geomagnetic field. Although optical auroral emissions are observed outside the radar look direction, our observations are consistent with the NEIAL echo occurring on field lines with particle precipitation.
  •  
10.
  • Sullivan, J. M., et al. (author)
  • An optical study of multiple NEIAL events driven by low energy electron precipitation
  • 2008
  • In: Annales Geophysicae. - : Copernicus GmbH. - 0992-7689 .- 1432-0576. ; 26:8, s. 2435-2447
  • Journal article (peer-reviewed)abstract
    • Optical data are compared with EISCAT radar observations of multiple Naturally Enhanced Ion-Acoustic Line (NEIAL) events in the dayside cusp. This study uses narrow field of view cameras to observe small-scale, short-lived auroral features. Using multiple-wavelength optical observations, a direct link between NEIAL occurrences and low energy (about 100 eV) optical emissions is shown. This is consistent with the Langmuir wave decay interpretation of NEIALs being driven by streams of low-energy electrons. Modelling work connected with this study shows that, for the measured ionospheric conditions and precipitation characteristics, growth of unstable Langmuir (electron plasma) waves can occur, which decay into ion-acoustic wave modes. The link with low energy optical emissions shown here, will enable future studies of the shape, extent, lifetime, grouping and motions of NEIALs.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view