SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Whitman William B) "

Search: WFRF:(Whitman William B)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Birney, Ewan, et al. (author)
  • Prepublication data sharing
  • 2009
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 461:7261, s. 168-170
  • Journal article (peer-reviewed)abstract
    • Rapid release of prepublication data has served the field of genomics well. Attendees at a workshop in Toronto recommend extending the practice to other biological data sets.
  •  
2.
  • Murray, Alison E., et al. (author)
  • Roadmap for naming uncultivated Archaea and Bacteria
  • 2020
  • In: Nature Microbiology. - : NATURE PUBLISHING GROUP. - 2058-5276. ; 5:8, s. 987-994
  • Journal article (peer-reviewed)abstract
    • The assembly of single-amplified genomes (SAGs) and metagenome-assembled genomes (MAGs) has led to a surge in genome-based discoveries of members affiliated with Archaea and Bacteria, bringing with it a need to develop guidelines for nomenclature of uncultivated microorganisms. The International Code of Nomenclature of Prokaryotes (ICNP) only recognizes cultures as 'type material', thereby preventing the naming of uncultivated organisms. In this Consensus Statement, we propose two potential paths to solve this nomenclatural conundrum. One option is the adoption of previously proposed modifications to the ICNP to recognize DNA sequences as acceptable type material; the other option creates a nomenclatural code for uncultivated Archaea and Bacteria that could eventually be merged with the ICNP in the future. Regardless of the path taken, we believe that action is needed now within the scientific community to develop consistent rules for nomenclature of uncultivated taxa in order to provide clarity and stability, and to effectively communicate microbial diversity. In this Consensus Statement, the authors discuss the issue of naming uncultivated prokaryotic microorganisms, which currently do not have a formal nomenclature system due to a lack of type material or cultured representatives, and propose two recommendations including the recognition of DNA sequences as type material.
  •  
3.
  • Kyrpides, Nikos C, et al. (author)
  • Genomic encyclopedia of bacteria and archaea: sequencing a myriad of type strains.
  • 2014
  • In: PLoS biology. - : Public Library of Science (PLoS). - 1545-7885. ; 12:8
  • Journal article (peer-reviewed)abstract
    • Microbes hold the key to life. They hold the secrets to our past (as the descendants of the earliest forms of life) and the prospects for our future (as we mine their genes for solutions to some of the planet's most pressing problems, from global warming to antibiotic resistance). However, the piecemeal approach that has defined efforts to study microbial genetic diversity for over 20 years and in over 30,000 genome projects risks squandering that promise. These efforts have covered less than 20% of the diversity of the cultured archaeal and bacterial species, which represent just 15% of the overall known prokaryotic diversity. Here we call for the funding of a systematic effort to produce a comprehensive genomic catalog of all cultured Bacteria and Archaea by sequencing, where available, the type strain of each species with a validly published name (currently∼11,000). This effort will provide an unprecedented level of coverage of our planet's genetic diversity, allow for the large-scale discovery of novel genes and functions, and lead to an improved understanding of microbial evolution and function in the environment.
  •  
4.
  • Siegel, Corey A., et al. (author)
  • Development of an index to define overall disease severity in IBD
  • 2018
  • In: Gut. - London, United Kingdom : BMJ Publishing Group Ltd. - 0017-5749 .- 1468-3288. ; 67:2, s. 244-254
  • Journal article (peer-reviewed)abstract
    • Background and aim: Disease activity for Crohn's disease (CD) and UC is typically defined based on symptoms at a moment in time, and ignores the long-term burden of disease. The aims of this study were to select the attributes determining overall disease severity, to rank the importance of and to score these individual attributes for both CD and UC.Methods: Using a modified Delphi panel, 14 members of the International Organization for the Study of Inflammatory Bowel Diseases (IOIBD) selected the most important attributes related to IBD. Eighteen IOIBD members then completed a statistical exercise (conjoint analysis) to create a relative ranking of these attributes. Adjusted utilities were developed by creating proportions for each level within an attribute.Results: For CD, 15.8% of overall disease severity was attributed to the presence of mucosal lesions, 10.9% to history of a fistula, 9.7% to history of abscess and 7.4% to history of intestinal resection. For UC, 18.1% of overall disease severity was attributed to mucosal lesions, followed by 14.0% for impact on daily activities, 11.2% C reactive protein and 10.1% for prior experience with biologics. Overall disease severity indices were created on a 100-point scale by applying each attribute's average importance to the adjusted utilities.Conclusions: Based on specialist opinion, overall CD severity was associated more with intestinal damage, in contrast to overall UC disease severity, which was more dependent on symptoms and impact on daily life. Once validated, disease severity indices may provide a useful tool for consistent assessment of overall disease severity in patients with IBD.
  •  
5.
  •  
6.
  • Philippot, Laurent, et al. (author)
  • The ecological coherence of high bacterial taxonomic ranks
  • 2010
  • In: Nature Reviews Microbiology. - : Springer Science and Business Media LLC. - 1740-1526 .- 1740-1534. ; 8:7, s. 523-529
  • Research review (peer-reviewed)abstract
    • The species is a fundamental unit of biological organization, but its relevance for Bacteria and Archaea is still hotly debated. Even more controversial is whether the deeper branches of the ribosomal RNA-derived phylogenetic tree, such as the phyla, have ecological importance. Here, we discuss the ecological coherence of high bacterial taxa in the light of genome analyses and present examples of niche differentiation between deeply diverging groups in terrestrial and aquatic systems. The ecological relevance of high bacterial taxa has implications for bacterial taxonomy, evolution and ecology.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view