SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Wiebe V) "

Search: WFRF:(Wiebe V)

  • Result 1-10 of 110
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • 2017
  • In: Physical Review D. - 2470-0010 .- 2470-0029. ; 96:2
  • Journal article (peer-reviewed)
  •  
2.
  •  
3.
  • Aartsen, M. G., et al. (author)
  • Multiwavelength follow-up of a rare IceCube neutrino multiplet
  • 2017
  • In: Astronomy and Astrophysics. - : EDP SCIENCES S A. - 0004-6361 .- 1432-0746. ; 607
  • Journal article (peer-reviewed)abstract
    • On February 17, 2016, the IceCube real-time neutrino search identified, for the first time, three muon neutrino candidates arriving within 100 s of one another, consistent with coming from the same point in the sky. Such a triplet is expected once every 13.7 years as a random coincidence of background events. However, considering the lifetime of the follow-up program the probability of detecting at least one triplet from atmospheric background is 32%. Follow-up observatories were notified in order to search for an electromagnetic counterpart. Observations were obtained by Swift's X-ray telescope, by ASAS-SN, LCO and MASTER at optical wavelengths, and by VERITAS in the very-high-energy gamma-ray regime. Moreover, the Swift BAT serendipitously observed the location 100 s after the first neutrino was detected, and data from the Fermi LAT and HAWC observatory were analyzed. We present details of the neutrino triplet and the follow-up observations. No likely electromagnetic counterpart was detected, and we discuss the implications of these constraints on candidate neutrino sources such as gamma-ray bursts, core-collapse supernovae and active galactic nucleus flares. This study illustrates the potential of and challenges for future follow-up campaigns.
  •  
4.
  • Aartsen, M. G., et al. (author)
  • Very high-energy gamma-ray follow-up program using neutrino triggers from IceCube
  • 2016
  • In: Journal of Instrumentation. - 1748-0221. ; 11
  • Journal article (peer-reviewed)abstract
    • We describe and report the status of a neutrino-triggered program in IceCube that generates real-time alerts for gamma-ray follow-up observations by atmospheric-Cherenkov telescopes (MAGIC and VERITAS). While IceCube is capable of monitoring the whole sky continuously, high-energy gamma-ray telescopes have restricted fields of view and in general are unlikely to be observing a potential neutrino-flaring source at the time such neutrinos are recorded. The use of neutrino-triggered alerts thus aims at increasing the availability of simultaneous multi-messenger data during potential neutrino flaring activity, which can increase the discovery potential and constrain the phenomenological interpretation of the high-energy emission of selected source classes (e. g. blazars). The requirements of a fast and stable online analysis of potential neutrino signals and its operation are presented, along with first results of the program operating between 14 March 2012 and 31 December 2015.
  •  
5.
  • Adrian-Martinez, S., et al. (author)
  • The First Combined Search For Neutrino Point-Sources In The Southern Hemisphere With The Antares And Icecube Neutrino Telescopes
  • 2016
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 823:1
  • Journal article (peer-reviewed)abstract
    • We present the results of searches for point-like sources of neutrinos based on the first combined analysis of data from both the ANTARES and IceCube neutrino telescopes. The combination of both detectors, which differ in size and location, forms a window in the southern sky where the sensitivity to point sources improves by up to a factor of 2 compared with individual analyses. Using data recorded by ANTARES from 2007 to 2012, and by IceCube from 2008 to 2011, we search for sources of neutrino emission both across the southern sky and from a preselected list of candidate objects. No significant excess over background has been found in these searches, and flux upper limits for the candidate sources are presented for E-2.5 and E-2 power-law spectra with different energy cut-offs.
  •  
6.
  • Gualtieri, R., et al. (author)
  • SPIDER : CMB Polarimetry from the Edge of Space
  • 2018
  • In: Journal of Low Temperature Physics. - : Springer Science and Business Media LLC. - 0022-2291 .- 1573-7357. ; 193:5-6, s. 1112-1121
  • Journal article (peer-reviewed)abstract
    • SPIDER is a balloon-borne instrument designed to map the polarization of the millimeter-wave sky at large angular scales. Spider targets the B-mode signature of primordial gravitational waves in the cosmic microwave background (CMB), with a focus on mapping a large sky area with high fidelity at multiple frequencies. SPIDER's first long-duration balloon (LDB) flight in January 2015 deployed a total of 2400 antenna-coupled transition-edge sensors (TESs) at 90 GHz and 150 GHz. In this work we review the design and in-flight performance of the SPIDER instrument, with a particular focus on the measured performance of the detectors and instrument in a space-like loading and radiation environment. SPIDER's second flight in December 2018 will incorporate payload upgrades and new receivers to map the sky at 285 GHz, providing valuable information for cleaning polarized dust emission from CMB maps.
  •  
7.
  • Bergman, A. S., et al. (author)
  • 280 GHz Focal Plane Unit Design and Characterization for the SPIDER-2 Suborbital Polarimeter
  • 2018
  • In: Journal of Low Temperature Physics. - : Springer Science and Business Media LLC. - 0022-2291 .- 1573-7357. ; 193:5-6, s. 1075-1084
  • Journal article (peer-reviewed)abstract
    • We describe the construction and characterization of the 280 GHz bolometric focal plane units (FPUs) to be deployed on the second flight of the balloon-borne SPIDER instrument. These FPUs are vital to SPIDER's primary science goal of detecting or placing an upper limit on the amplitude of the primordial gravitational wave signature in the cosmic microwave background (CMB) by constraining the B-mode contamination in the CMB from Galactic dust emission. Each 280 GHz focal plane contains a 16 x 16 grid of corrugated silicon feedhorns coupled to an array of aluminum-manganese transition-edge sensor (TES) bolometers fabricated on 150 mm diameter substrates. In total, the three 280 GHz FPUs contain 1530 polarization-sensitive bolometers (765 spatial pixels) optimized for the low loading environment in flight and read out by time-division SQUID multiplexing. In this paper, we describe the mechanical, thermal, and magnetic shielding architecture of the focal planes and present cryogenic measurements which characterize yield and the uniformity of several bolometer parameters. The assembled FPUs have high yields, with one array as high as 95% including defects from wiring and readout. We demonstrate high uniformity in device parameters, finding the median saturation power for each TES array to be similar to 3 pW at 300 mK with a less than 6% variation across each array at 1 sigma. These focal planes will be deployed alongside the 95 and 150 GHz telescopes in the SPIDER-2 instrument, slated to fly from McMurdo Station in Antarctica in December 2018.
  •  
8.
  • Boyarchuk, A. A., et al. (author)
  • Scientific problems addressed by the Spektr-UV space project (world space Observatory-Ultraviolet)
  • 2016
  • In: Astronomy reports (Print). - 1063-7729 .- 1562-6881. ; 60:1, s. 1-42
  • Journal article (peer-reviewed)abstract
    • The article presents a review of scientific problems and methods of ultraviolet astronomy, focusing on perspective scientific problems (directions) whose solution requires UV space observatories. These include reionization and the history of star formation in the Universe, searches for dark baryonic matter, physical and chemical processes in the interstellar medium and protoplanetary disks, the physics of accretion and outflows in astrophysical objects, from Active Galactic Nuclei to close binary stars, stellar activity (for both low-mass and high-mass stars), and processes occurring in the atmospheres of both planets in the solar system and exoplanets. Technological progress in UV astronomy achieved in recent years is also considered. The well advanced, international, Russian-led Spektr-UV (World Space Observatory-Ultraviolet) project is described in more detail. This project is directed at creating a major space observatory operational in the ultraviolet (115-310 nm). This observatory will provide an effective, and possibly the only, powerful means of observing in this spectral range over the next ten years, and will be an powerful tool for resolving many topical scientific problems.
  •  
9.
  • Filippini, J. P., et al. (author)
  • In-Flight Gain Monitoring of SPIDER's Transition-Edge Sensor Arrays
  • 2022
  • In: Journal of Low Temperature Physics. - : Springer Science and Business Media LLC. - 0022-2291 .- 1573-7357. ; 209:3-4, s. 649-657
  • Journal article (peer-reviewed)abstract
    • Experiments deploying large arrays of transition-edge sensors (TESs) often require a robust method to monitor gain variations with minimal loss of observing time. We propose a sensitive and non-intrusive method for monitoring variations in TES responsivity using small square waves applied to the TES bias. We construct an estimator for a TES's small-signal power response from its electrical response that is exact in the limit of strong electrothermal feedback. We discuss the application and validation of this method using flight data from SPIDER, a balloon-borne telescope that observes the polarization of the cosmic microwave background with more than 2000 TESs. This method may prove useful for future balloon- and space-based instruments, where observing time and ground control bandwidth are limited.
  •  
10.
  • Gambrel, A. E., et al. (author)
  • The XFaster Power Spectrum and Likelihood Estimator for the Analysis of Cosmic Microwave Background Maps
  • 2021
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 922:2
  • Journal article (peer-reviewed)abstract
    • We present the XFaster analysis package, a fast, iterative angular power spectrum estimator based on a diagonal approximation to the quadratic Fisher matrix estimator. It uses Monte Carlo simulations to compute noise biases and filter transfer functions and is thus a hybrid of both Monte Carlo and quadratic estimator methods. In contrast to conventional pseudo-Cℓ–based methods, the algorithm described here requires a minimal number of simulations and does not require them to be precisely representative of the data to estimate accurate covariance matrices for the bandpowers. The formalism works with polarization-sensitive observations and also data sets with identical, partially overlapping, or independent survey regions. The method was first implemented for the analysis of BOOMERanG data and also used as part of the Planck analysis. Here we describe the full, publicly available analysis package, written in Python, as developed for the analysis of data from the 2015 flight of the Spider instrument. The package includes extensions for self-consistently estimating null spectra and estimating fits for Galactic foreground contributions. We show results from the extensive validation of XFaster using simulations and its application to the Spider data set.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 110

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view