SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Wierup N) "

Search: WFRF:(Wierup N)

  • Result 1-10 of 17
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Chriett, S., et al. (author)
  • SCRT1 is a novel beta cell transcription factor with insulin regulatory properties
  • 2021
  • In: Molecular and Cellular Endocrinology. - : Elsevier BV. - 0303-7207 .- 1872-8057. ; 521
  • Journal article (peer-reviewed)abstract
    • Here we show that scratch family transcriptional repressor 1 (SCRT1), a zinc finger transcriptional regulator, is a novel regulator of beta cell function. SCRT1 was found to be expressed in beta cells in rodent and human islets. In human islets, expression of SCRT1 correlated with insulin secretion capacity and the expression of the insulin (INS) gene. Furthermore, SCRT1 mRNA expression was lower in beta cells from T2D patients. siRNA-mediated Scrt1 silencing in INS-1832/13 cells, mouse- and human islets resulted in impaired glucose-stimulated insulin secretion and decreased expression of the insulin gene. This is most likely due to binding of SCRT1 to E-boxes of the Ins1 gene as shown with ChIP. Scrt1 silencing also reduced the expression of several key beta cell transcription factors. Moreover, Scrt1 mRNA expression was reduced by glucose and SCRT1 protein was found to translocate between the nucleus and the cytosol in a glucose-dependent fashion in INS-1832/13 cells as well as in a rodent model of T2D. SCRT1 was also regulated by a GSK3β-dependent SCRT1-serine phosphorylation. Taken together, SCRT1 is a novel beta cell transcription factor that regulates insulin secretion and is affected in T2D.
  •  
4.
  • Chu, Lianhe, et al. (author)
  • In vivo drug discovery for increasing incretin-expressing cells identifies DYRK inhibitors that reinforce the enteroendocrine system
  • 2022
  • In: Cell Chemical Biology. - : Elsevier BV. - 2451-9456 .- 2451-9448. ; 29:9, s. 5-1380
  • Journal article (peer-reviewed)abstract
    • Analogs of the incretin hormones Gip and Glp-1 are used to treat type 2 diabetes and obesity. Findings in experimental models suggest that manipulating several hormones simultaneously may be more effective. To identify small molecules that increase the number of incretin-expressing cells, we established a high-throughput in vivo chemical screen by using the gip promoter to drive the expression of luciferase in zebrafish. All hits increased the numbers of neurogenin 3-expressing enteroendocrine progenitors, Gip-expressing K-cells, and Glp-1-expressing L-cells. One of the hits, a dual-specificity tyrosine phosphorylation-regulated kinase (DYRK) inhibitor, additionally decreased glucose levels in both larval and juvenile fish. Knock-down experiments indicated that nfatc4, a downstream mediator of DYRKs, regulates incretin+ cell number in zebrafish, and that Dyrk1b regulates Glp-1 expression in an enteroendocrine cell line. DYRK inhibition also increased the number of incretin-expressing cells in diabetic mice, suggesting a conserved reinforcement of the enteroendocrine system, with possible implications for diabetes.
  •  
5.
  • Hoppener, J. W. M., et al. (author)
  • Human Islet Amyloid Polypeptide Transgenic Mice: In Vivo and Ex Vivo Models for the Role of hIAPP in Type 2 Diabetes Mellitus
  • 2008
  • In: Experimental Diabetes Research. - : Hindawi Limited. - 1687-5214 .- 1687-5303.
  • Journal article (peer-reviewed)abstract
    • Human islet amyloid polypeptide (hIAPP), a pancreatic islet protein of 37 amino acids, is the main component of islet amyloid, seen at autopsy in patients with type 2 diabetes mellitus (DM2). To investigate the roles of hIAPP and islet amyloid in DM2, we generated transgenic mice expressing hIAPP in their islet beta cells. In this study, we found that after a long-term, high-fat diet challenge islet amyloid was observed in only 4 of 19 hIAPP transgenic mice. hIAPP transgenic females exhibited severe glucose intolerance, which was associated with a downregulation of GLUT-2 mRNA expression. In isolated islets from hIAPP males cultured for 3 weeks on high-glucose medium, the percentage of amyloid containing islets increased from 5.5% to 70%. This ex vivo system will allow a more rapid, convenient, and specific study of factors influencing islet amyloidosis as well as of therapeutic strategies to interfere with this pathological process. Copyright (C) 2008 J. W. M. Hoppener et al.
  •  
6.
  • Johansson, Bente Berg, et al. (author)
  • Nuclear import of glucokinase in pancreatic beta-cells is mediated by a nuclear localization signal and modulated by SUMOylation
  • 2017
  • In: Molecular and Cellular Endocrinology. - : Elsevier BV. - 0303-7207. ; 454, s. 146-157
  • Journal article (peer-reviewed)abstract
    • The localization of glucokinase in pancreatic beta-cell nuclei is a controversial issue. Although previous reports suggest such a localization, the mechanism for its import has so far not been identified. Using immunofluorescence, subcellular fractionation and mass spectrometry, we present evidence in support of glucokinase localization in beta-cell nuclei of human and mouse pancreatic sections, as well as in human and mouse isolated islets, and murine MIN6 cells. We have identified a conserved, seven-residue nuclear localization signal (30LKKVMRR36) in the human enzyme. Substituting the residues KK31,32 and RR35,36 with AA led to a loss of its nuclear localization in transfected cells. Furthermore, our data indicates that SUMOylation of glucokinase modulates its nuclear import, while high glucose concentrations do not significantly alter the enzyme nuclear/cytosolic ratio. Thus, for the first time, we provide data in support of a nuclear import of glucokinase mediated by a redundant mechanism, involving a nuclear localization signal, and which is modulated by its SUMOylation. These findings add new knowledge to the functional role of glucokinase in the pancreatic beta-cell.
  •  
7.
  • Lindqvist, A, et al. (author)
  • Ghrelin suppresses insulin secretion in human islets and type 2 diabetes patients have diminished islet ghrelin cell number and lower plasma ghrelin levels
  • 2020
  • In: Molecular and Cellular Endocrinology. - : Elsevier BV. - 0303-7207 .- 1872-8057. ; 511
  • Journal article (peer-reviewed)abstract
    • It is not known how ghrelin affects insulin secretion in human islets from patients with type 2 diabetes (T2D) or whether islet ghrelin expression or circulating ghrelin levels are altered in T2D. Here we sought out to identify the effect of ghrelin on insulin secretion in human islets and the impact of T2D on circulating ghrelin levels and on islet ghrelin cells. The effect of ghrelin on insulin secretion was assessed in human T2D and non-T2D islets. Ghrelin expression was assessed with RNA-sequencing (n = 191) and immunohistochemistry (n = 21). Plasma ghrelin was measured with ELISA in 40 T2D and 40 non-T2D subjects. Ghrelin exerted a glucose-dependent insulin-suppressing effect in islets from both T2D and non-T2D donors. Compared with non-T2D donors, T2D donors had reduced ghrelin mRNA expression and 75% less islet ghrelin cells, and ghrelin mRNA expression correlated negatively with HbA1c. T2D subjects had 25% lower fasting plasma ghrelin levels than matched controls. Thus, ghrelin has direct insulin-suppressing effects in human islets and T2D patients have lower fasting ghrelin levels, likely as a result of reduced number of islet ghrelin cells. These findings support inhibition of ghrelin signaling as a potential therapeutic avenue for stimulation of insulin secretion in T2D patients.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view