SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Wilkins Justin) "

Search: WFRF:(Wilkins Justin)

  • Result 1-10 of 13
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Baverel, Paul, et al. (author)
  • Evaluation of the Nonparametric Estimation Method in NONMEM VI: Application to Real Data
  • 2009
  • In: Journal of Pharmacokinetics and Pharmacodynamics. - : Springer Science and Business Media LLC. - 1567-567X .- 1573-8744. ; 36:4, s. 297-315
  • Journal article (peer-reviewed)abstract
    • The aim of the study was to evaluate the nonparametric estimation methods available in NONMEM VI in comparison with the parametric first-order method (FO) and the first-order conditional estimation method (FOCE) when applied to real datasets. Four methods for estimating model parameters and parameter distributions (FO, FOCE, nonparametric preceded by FO (FO-NONP) and nonparametric preceded by FOCE (FOCE-NONP)) were compared for 25 models previously developed using real data and a parametric method. Numerical predictive checks were used to test the appropriateness of each model. Up to 1000 new datasets were simulated from each model and with each method to construct 90% and 50% prediction intervals. The mean absolute error and the mean error of the different outcomes investigated were computed as indicators of imprecision and bias respectively and formal statistical tests were performed. Overall, less imprecision and less bias were observed with nonparametric methods than with parametric methods. Across the 25 models, t-tests revealed that imprecision and bias were significantly lower (P < 0.05) with FOCE-NONP than with FOCE for half of the NPC outcomes investigated. Improvements were even more pronounced with FO-NONP in comparison with FO. In conclusion, when applied to real datasets and evaluated by numerical predictive checks, the nonparametric estimation methods in NONMEM VI performed better than the corresponding parametric methods (FO or FOCE).
  •  
2.
  • Bonate, Peter L., et al. (author)
  • Training the next generation of pharmacometric modelers : a multisector perspective
  • 2023
  • In: Journal of Pharmacokinetics and Pharmacodynamics. - : Springer Nature. - 1567-567X .- 1573-8744. ; 51:1, s. 5-31
  • Journal article (peer-reviewed)abstract
    • The current demand for pharmacometricians outmatches the supply provided by academic institutions and considerable investments are made to develop the competencies of these scientists on-the-job. Even with the observed increase in academic programs related to pharmacometrics, this need is unlikely to change in the foreseeable future, as the demand and scope of pharmacometrics applications keep expanding. Further, the field of pharmacometrics is changing. The field largely started when Lewis Sheiner and Stuart Beal published their seminal papers on population pharmacokinetics in the late 1970’s and early 1980’s and has continued to grow in impact and use since its inception. Physiological-based pharmacokinetics and systems pharmacology have grown rapidly in scope and impact in the last decade and machine learning is just on the horizon. While all these methodologies are categorized as pharmacometrics, no one person can be an expert in everything. So how do you train future pharmacometricians? Leading experts in academia, industry, contract research organizations, clinical medicine, and regulatory gave their opinions on how to best train future pharmacometricians. Their opinions were collected and synthesized to create some general recommendations.
  •  
3.
  • Conrado, Daniela J., et al. (author)
  • Open innovation : Towards sharing of data, models and workflows
  • 2017
  • In: European Journal of Pharmaceutical Sciences. - : Elsevier BV. - 0928-0987 .- 1879-0720. ; 109, s. S65-S71
  • Research review (peer-reviewed)abstract
    • Sharing of resources across organisations to support open innovation is an old idea, but which is being taken up by the scientific community at increasing speed, concerning public sharing in particular. The ability to address new questions or provide more precise answers to old questions through merged information is among the attractive features of sharing. Increased efficiency through reuse, and increased reliability of scientific findings through enhanced transparency, are expected outcomes from sharing. In the field of pharmacometrics, efforts to publicly share data, models and workflow have recently started. Sharing of individual-level longitudinal data for modelling requires solving legal, ethical and proprietary issues similar to many other fields, but there are also pharmacometric-specific aspects regarding data formats, exchange standards, and database properties. Several organisations (CDISC, C-Path, IMI, ISoP) are working to solve these issues and propose standards. There are also a number of initiatives aimed at collecting disease-specific databases-Alzheimer's Disease (ADNI, CAMD), malaria (WWARN), oncology (PDS), Parkinson's Disease (PPMI), tuberculosis (CPTR, TB-PACTS, ReSeqTB)-suitable for drug-disease modelling. Organized sharing of pharmacometric executable model code and associated information has in the past been sparse, but a model repository (DDMoRe Model Repository) intended for the purpose has recently been launched. In addition several other services can facilitate model sharing more generally. Pharmacometric workflows have matured over the last decades and initiatives to more fully capture those applied to analyses are ongoing. In order to maximize both the impact of pharmacometrics and the knowledge extracted from clinical data, the scientific community needs to take ownership of and create opportunities for open innovation.
  •  
4.
  • Joerger, Markus, et al. (author)
  • Population pharmacokinetics and pharmacodynamics of paclitaxel and carboplatin in ovarian cancer patients : a study by the European organization for research and treatment of cancer-pharmacology and molecular mechanisms group and new drug development group.
  • 2007
  • In: Clinical Cancer Research. - 1078-0432 .- 1557-3265. ; 13:21, s. 6410-6418
  • Journal article (peer-reviewed)abstract
    • Purpose: Paclitaxel and carboplatin are frequently used in advanced ovarian cancer following cytoreductive surgery. Threshold models have been used to predict paclitaxel pharmacokinetic-pharmacodynamics, whereas the time above paclitaxel plasma concentration of 0.05 to 0.2 μmol/L (tC > 0.05−0.2) predicts neutropenia. The objective of this study was to build a population pharmacokinetic-pharmacodynamic model of paclitaxel/carboplatin in ovarian cancer patients. Experimental Design: One hundred thirty-nine ovarian cancer patients received paclitaxel (175 mg/m2) over 3 h followed by carboplatin area under the concentration-time curve 5 mg/mL*min over 30 min. Plasma concentration-time data were measured, and data were processed using nonlinear mixed-effect modeling. Semiphysiologic models with linear or sigmoidal maximum response and threshold models were adapted to the data. Results: One hundred five patients had complete pharmacokinetic and toxicity data. In 34 patients with measurable disease, objective response rate was 76%. Neutrophil and thrombocyte counts were adequately described by an inhibitory linear response model. Paclitaxel tC > 0.05 was significantly higher in patients with a complete (91.8 h) or partial (76.3 h) response compared with patients with progressive disease (31.5 h; P = 0.02 and 0.05, respectively). Patients with paclitaxel tC > 0.05 > 61.4 h (mean value) had a longer time to disease progression compared with patients with paclitaxel tC > 0.05 < 61.4 h (89.0 versus 61.9 weeks; P = 0.05). Paclitaxel tC > 0.05 was a good predictor for severe neutropenia (P = 0.01), whereas carboplatin exposure (Cmax and area under the concentration-time curve) was the best predictor for thrombocytopenia (P < 10−4). Conclusions: In this group of patients, paclitaxel tC > 0.05 is a good predictive marker for severe neutropenia and clinical outcome, whereas carboplatin exposure is a good predictive marker for thrombocytopenia.
  •  
5.
  • Jönsson, Siv, et al. (author)
  • Population Pharmacokinetics of Ethambutol in South African Tuberculosis Patients
  • 2011
  • In: Antimicrobial Agents and Chemotherapy. - 0066-4804 .- 1098-6596. ; 55:9, s. 4230-4237
  • Journal article (peer-reviewed)abstract
    • Ethambutol, one of four drugs in the first-line antitubercular regimen, is used to protect against rifampin resistance in the event of preexisting resistance to isoniazid. The population pharmacokinetics of ethambutol in South African patients with pulmonary tuberculosis were characterized using nonlinear mixed-effects modeling. Patients from 2 centers were treated with ethambutol (800 to 1,500 mg daily) combined with standard antitubercular medication. Plasma concentrations of ethambutol were measured following multiple doses at steady state and were determined using a validated high-pressure liquid chromatography-tandem mass spectrometric method. The data comprised 189 patients (54% male, 12% HIV positive) weighing 47 kg, on average (range, 29 to 86 kg), and having a mean age of 36 years (range, 16 to 72 years). The estimated creatinine clearance was 79 ml/min (range, 23 to 150 ml/min). A two-compartment model with one transit compartment prior to first-order absorption and allometric scaling by body weight on clearance and volume terms was selected. HIV infection was associated with a 15% reduction in bioavailability. Renal function was not related to ethambutol clearance in this cohort. Interoccasion variability exceeded interindividual variability for oral clearance (coefficient of variation, 36 versus 20%). Typical oral clearance in this analysis (39.9 liters/h for a 50-kg individual) was lower than that previously reported, a finding partly explained by the differences in body weight between the studied populations. In summary, a population model describing the pharmacokinetics of ethambutol in South African tuberculosis patients was developed, but additional studies are needed to characterize the effects of renal function.
  •  
6.
  • Karlsson, Kristin E., et al. (author)
  • Modeling Disease Progression in Acute Stroke Using Clinical Assessment Scales
  • 2010
  • In: AAPS Journal. - : Springer Science and Business Media LLC. - 1550-7416. ; 12:4, s. 683-691
  • Journal article (peer-reviewed)abstract
    • This article demonstrates techniques for describing and predicting disease progression in acute stroke by modeling scores measured using clinical assessment scales, accommodating dropout as an additional source of information. Scores assessed using the National Institutes of Health Stroke Scale and the Barthel Index in acute stroke patients were used to model the time course of disease progression. Simultaneous continuous and probabilistic models for describing the nature and magnitude of score changes were developed, and used to model the trajectory of disease progression using scale scores. The models described the observed data well, and exhibited good simulation properties. Applications include longitudinal analysis of stroke scale data, clinical trial simulation, and prognostic forecasting. Based upon experience in other areas, it is likely that application of this modeling methodology will enable reductions in the number of patients needed to carry out clinical studies of treatments for acute stroke.
  •  
7.
  • Langdon, Grant, et al. (author)
  • Population pharmacokinetics of rifapentine and its primary desacetyl metabolite in South African tuberculosis patients
  • 2005
  • In: Antimicrobial Agents and Chemotherapy. - 0066-4804 .- 1098-6596. ; 49:11, s. 4429-4436
  • Journal article (peer-reviewed)abstract
    • This study was designed to describe the population pharmacokinetics of rifapentine (RFP) and 25-desacetyl RFP in a South African pulmonary tuberculosis patient population. Special reference was made to studying the influence of previous exposure to rifampin (RIF) and the variability in pharmacokinetic parameters between patients and between occasions and the influence of different covariates. Patients were included in the study if they had been receiving first-line antimycobacterial therapy (rifampin, isoniazid, pyrazinamide, and ethambutol) for not less than 4 weeks and not more than 6 weeks and were divided into three RFP dosage groups based on weight: 600 mg, <45 kg; 750 mg, 46 to 55 kg; and 900 mg, >55 kg. Participants received a single oral dose of RFP together with concomitant antimycobacterial agents, excluding RIF, on study days 1 and 5 after they ingested a soup-based meal. The RFP and 25-desacetyl RFP concentration-time data were analyzed by nonlinear mixed-effect modeling using NONMEM. The pharmacokinetics of the parent drug were modeled separately, and the individual pharmacokinetic parameters were used as inputs for the 25-desacetyl RFP pharmacokinetic model. A one-compartment disposition model was found to best describe the data for both the parent and the metabolite, and the metabolite was assumed to be formed only from the central compartment of the parent drug. Prior treatment with RIF did not alter the pharmacokinetics of RFP but appeared to increase the excretion of 25-desacetyl RFP in a nonlinear fashion. The RFP oral clearance and volume of distribution were found to increase by 0.049 liter/h and 0.691 liter, respectively, with a 1-kg increase from the median weight of 50 kg. The oral clearance of 25-desacetyl RFP was found to be 35% lower in female patients. The model developed here describes the population pharmacokinetics of RFP and its primary metabolite in tuberculosis patients and includes the effects of prior administration with RIF and covariate factors.
  •  
8.
  •  
9.
  • Wilkins, Justin J., et al. (author)
  • Pharmacometrics in tuberculosis : progress and opportunities
  • 2022
  • In: International Journal of Antimicrobial Agents. - : Elsevier. - 0924-8579 .- 1872-7913. ; 60:3
  • Journal article (peer-reviewed)abstract
    • Tuberculosis (TB) remains one of the leading causes of death by a communicable agent, infecting up to one-quarter of the world's population, predominantly in disadvantaged communities. Pharmacometrics employ quantitative mathematical models to describe the relationships between pharmacokinetics and pharmacodynamics, and to predict drug doses, exposures and responses. Pharmacometric approaches have provided a scientific basis for improved dosing of anti-TB drugs and concomitantly administered antiretrovirals at the population level. The development of modelling frameworks including physiologically based pharmacokinetics, quantitative systems pharmacology and machine learning provides an opportunity to extend the role of pharmacometrics to in-silico quantification of drug-drug interactions, prediction of doses for special populations, dose optimization and individualization, and understanding the complex exposure-response relationships of multi-drug regimens in terms of both efficacy and safety, informing regimen design for future study. This short, clinically focused review explores what has been done, and what opportunities exist for pharmacometrics to impact TB pharmacotherapy.
  •  
10.
  • Wilkins, Justin J., et al. (author)
  • Population Pharmacokinetics of Rifampin in Pulmonary Tuberculosis Patients Including a Semi-mechanistic Model to Describe Variable Absorption
  • 2008
  • In: Antimicrobial Agents and Chemotherapy. - 0066-4804 .- 1098-6596. ; 52:6, s. 2138-2148
  • Journal article (peer-reviewed)abstract
    • This article describes the population pharmacokinetics of rifampin in South African pulmonary tuberculosis patients. Three datasets containing 2,913 rifampin plasma concentration-time data points, collected from 261 South African pulmonary tuberculosis patients aged 18 to 72 years and weighing 28.5 to 85.5 kg and receiving regular daily treatment that included administration of rifampin (450 to 600 mg) for at least 10 days, were pooled. A compartmental pharmacokinetic model was developed using nonlinear mixed-effects modeling. Variability in the shape of the absorption curve was described using a flexible transit compartment model, in which a delay in the onset of absorption and a gradually changing absorption rate were modeled as the passage of drug through a chain of hypothetical compartments, ultimately reaching the absorption compartment. A previously described implementation was extended to allow its application to multiple-dosing data. The typical population estimate of oral clearance was 19.2 liters . h(-1), while the volume of distribution was estimated to be 53.2 liters. Interindividual variability was estimated to be 52.8% for clearance and 43.4% for volume of distribution. Interoccasional variability was estimated for CL/F (22.5%) and mean transit time during absorption (67.9%). The use of single-drug formulations was found to increase both the mean transit time (by 104%) and clearance (by 23.6%) relative to fixed-dose-combination use. A strong correlation between clearance and volume of distribution suggested substantial variability in bioavailability, which could have clinical implications, given the dependence of treatment effectiveness on exposure. The final model successfully described rifampin pharmacokinetics in the population studied and is suitable for simulation in this context.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view