SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Willekens Stefanie M. A.) "

Sökning: WFRF:(Willekens Stefanie M. A.)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alanentalo, Tomas, et al. (författare)
  • Mesoscopic Optical Imaging of the Pancreas : Revisiting Pancreatic Anatomy and Pathophysiology
  • 2021
  • Ingår i: Frontiers in Endocrinology. - : Frontiers Media S.A.. - 1664-2392. ; 12
  • Forskningsöversikt (refereegranskat)abstract
    • The exocrine-endocrine multipart organization of the pancreas makes it an exceedingly challenging organ to analyze, quantitatively and spatially. Both in rodents and humans, estimates of the pancreatic cellular composition, including beta-cell mass, has been largely relying on the extrapolation of 2D stereological data originating from limited sample volumes. Alternatively, they have been obtained by low resolution non-invasive imaging techniques providing little detail regarding the anatomical organization of the pancreas and its cellular and/or molecular make up. In this mini-review, the state of the art and the future potential of currently existing and emerging high-resolution optical imaging techniques working in the mm-cm range with μm resolution, here referred to as mesoscopic imaging approaches, will be discussed regarding their contribution toward a better understanding of pancreatic anatomy both in normal conditions and in the diabetic setting. In particular, optical projection tomography (OPT) and light sheet fluorescence microscopy (LSFM) imaging of the pancreas and their associated tissue processing and computational analysis protocols will be discussed in the light of their current capabilities and future potential to obtain more detailed 3D-spatial, quantitative, and molecular information of the pancreas.
  •  
2.
  • Chotiwan, Nunya, et al. (författare)
  • Type I interferon shapes brain distribution and tropism of tick-borne flavivirus
  • 2023
  • Ingår i: Nature Communications. - : Springer Nature. - 2041-1723. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Viral tropism within the brain and the role(s) of vertebrate immune response to neurotropic flaviviruses infection is largely understudied. We combine multimodal imaging (cm-nm scale) with single nuclei RNA-sequencing to study Langat virus in wildtype and interferon alpha/beta receptor knockout (Ifnar-/-) mice to visualize viral pathogenesis and define molecular mechanisms. Whole brain viral infection is imaged by Optical Projection Tomography coregistered to ex vivo MRI. Infection is limited to grey matter of sensory systems in wildtype mice, but extends into white matter, meninges and choroid plexus in Ifnar-/- mice. Cells in wildtype display strong type I and II IFN responses, likely due to Ifnb expressing astrocytes, infiltration of macrophages and Ifng-expressing CD8+ NK cells, whereas in Ifnar-/-, the absence of this response contributes to a shift in cellular tropism towards non-activated resident microglia. Multimodal imaging-transcriptomics exemplifies a powerful way to characterize mechanisms of viral pathogenesis and tropism.
  •  
3.
  •  
4.
  • Willekens, Stefanie M. A., et al. (författare)
  • An MR-based brain template and atlas for optical projection tomography and light sheet fluorescence microscopy in neuroscience
  • 2024
  • Ingår i: Frontiers in Neuroscience. - : Frontiers Media S.A.. - 1662-4548 .- 1662-453X. ; 18
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Optical Projection Tomography (OPT) and light sheet fluorescence microscopy (LSFM) are high resolution optical imaging techniques, ideally suited for ex vivo 3D whole mouse brain imaging. Although they exhibit high specificity for their targets, the anatomical detail provided by tissue autofluorescence remains limited.Methods: T1-weighted images were acquired from 19 BABB or DBE cleared brains to create an MR template using serial longitudinal registration. Afterwards, fluorescent OPT and LSFM images were coregistered/normalized to the MR template to create fusion images.Results: Volumetric calculations revealed a significant difference between BABB and DBE cleared brains, leading to develop two optimized templates, with associated tissue priors and brain atlas, for BABB (OCUM) and DBE (iOCUM). By creating fusion images, we identified virus infected brain regions, mapped dopamine transporter and translocator protein expression, and traced innervation from the eye along the optic tract to the thalamus and superior colliculus using cholera toxin B. Fusion images allowed for precise anatomical identification of fluorescent signal in the detailed anatomical context provided by MR.Discussion: The possibility to anatomically map fluorescent signals on magnetic resonance (MR) images, widely used in clinical and preclinical neuroscience, would greatly benefit applications of optical imaging of mouse brain. These specific MR templates for cleared brains enable a broad range of neuroscientific applications integrating 3D optical brain imaging.
  •  
5.
  • Willekens, Stefanie M. A., et al. (författare)
  • Optically Cleared Umeå brain template : An MR-based brain template and atlas for optical projection and light sheet fluorescence microscopy
  • 2024
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Optical projection tomography (OPT) and light sheet fluorescence microscopy (LSFM) are high-resolution optical imaging techniques operating in the mm-cm range, ideally suited forex vivo3D whole mouse brain imaging. Although these techniques exhibit high sensitivity and specificity for antibody-labeled targets, the provided anatomical information remains limited. To allow anatomical mapping of fluorescent signal in whole brain, we developed a novel magnetic resonance (MR) – based template with its associated tissue priors and atlas labels, specifically designed for brains subjected to tissue processing protocols required for 3D optical imaging. We investigated the effect of tissue pre-processing and clearing on brain size and morphology and developed optimized templates for BABB/Murrays clear (OCUM) and DBE/iDISCO (iOCUM) cleared brains. By creating optical-(i)OCUM fusion images using our mapping procedure, we localized dopamine transporter and translocator protein expression and tracer innervation from the eye to the lateral geniculate nucleus of thalamus and superior colliculus. These fusion images allowed for precise anatomical identification of fluorescent signal in discrete brain areas. As such, these templates enable applications in a broad range of research areas integrating optical 3D brain imaging by providing an MR template for cleared brains.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy