SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Windahl K) "

Search: WFRF:(Windahl K)

  • Result 1-10 of 35
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Colldén, Hannah, et al. (author)
  • Dehydroepiandrosterone Supplementation Results in Varying Tissue-specific Levels of Dihydrotestosterone in Male Mice
  • 2022
  • In: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 163:12
  • Journal article (peer-reviewed)abstract
    • Dehydroepiandrosterone (DHEA), an adrenal androgen precursor, can be metabolized in target tissues into active sex steroids. It has been proposed that DHEA supplementation might result in restoration of physiological local sex steroid levels, but knowledge on the effect of DHEA treatment on local sex steroid levels in multiple tissues is lacking. To determine the effects of DHEA on tissue-specific levels of sex steroids, we treated orchiectomized (ORX) male mice with DHEA for 3 weeks and compared them with vehicle-treated ORX mice and gonadal intact mice. Intra-tissue levels of sex steroids were analyzed in reproductive organs (seminal vesicles, prostate, m. levator ani), major body compartments (white adipose tissue, skeletal muscle, and brain), adrenals, liver, and serum using a sensitive and validated gas chromatography-mass spectrometry method. DHEA treatment restored levels of both testosterone (T) and dihydrotestosterone (DHT) to approximately physiological levels in male reproductive organs. In contrast, this treatment did not increase DHT levels in skeletal muscle or brain. In the liver, DHEA treatment substantially increased levels of T (at least 4-fold) and DHT (+536%, P < 0.01) compared with vehicle-treated ORX mice. In conclusion, we provide a comprehensive map of the effect of DHEA treatment on intra-tissue sex steroid levels in ORX mice with a restoration of physiological levels of androgens in male reproductive organs while DHT levels were not restored in the skeletal muscle or brain. This, and the unexpected supraphysiological androgen levels in the liver, may be a cause for concern considering the uncontrolled use of DHEA.
  •  
3.
  •  
4.
  • Farman, Helen H., 1983, et al. (author)
  • Female Mice Lacking Estrogen Receptor-alpha in Hypothalamic Proopiomelanocortin (POMC) Neurons Display Enhanced Estrogenic Response on Cortical Bone Mass
  • 2016
  • In: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 157:8, s. 3242-3252
  • Journal article (peer-reviewed)abstract
    • Estrogens are important regulators of bone mass and their effects are mainly mediated via estrogen receptor(ER)alpha. Central ER alpha exerts an inhibitory role on bone mass. ER alpha is highly expressed in the arcuate (ARC) and the ventromedial (VMN) nuclei in the hypothalamus. To test whether ER alpha in proopiomelanocortin (POMC) neurons, located in ARC, is involved in the regulation of bone mass, we used mice lacking ER alpha expression specifically in POMC neurons (POMC-ER alpha(-/-)). Female POMC-ER alpha(-/-) and control mice were ovariectomized (OVX) and treated with vehicle or estradiol (0.5 mu g/d) for 6 weeks. As expected, estradiol treatment increased the cortical bone thickness in femur, the cortical bone mechanical strength in tibia and the trabecular bone volume fraction in both femur and vertebrae in OVX control mice. Importantly, the estrogenic responses were substantially increased in OVX POMC-ER alpha(-/-) mice compared with the estrogenic responses in OVX control mice for cortical bone thickness (+ 126 +/- 34%, P < .01) and mechanical strength (+ 193 +/- 38%, P <.01). To test whether ER alpha in VMN is involved in the regulation of bone mass, ER alpha was silenced using an adeno-associated viral vector. Silencing of ER alpha in hypothalamic VMN resulted in unchanged bone mass. In conclusion, mice lacking ER alpha in POMC neurons display enhanced estrogenic response on cortical bone mass and mechanical strength. We propose that the balance between inhibitory effects of central ER alpha activity in hypothalamic POMC neuronsin ARC and stimulatory peripheral ER alpha-mediated effects in bone determines cortical bone mass in female mice.
  •  
5.
  • Farman, H. H., et al. (author)
  • Female mice lacking estrogen receptor-α in hypothalamic proopiomelanocortin (POMC) neurons display enhanced estrogenic response on cortical bone mass
  • 2016
  • In: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 157:8, s. 3242-3252
  • Journal article (peer-reviewed)abstract
    • Estrogens are important regulators of bone mass and their effects are mainly mediated via estrogen receptor(ER)α.CentralERα exertsaninhibitoryroleonbonemass.ERα ishighlyexpressedinthearcuate (ARC) and the ventromedial (VMN) nuclei in the hypothalamus. To test whether ERα in proopiomelanocortin (POMC) neurons, located in ARC, is involved in the regulation of bone mass, we used mice lacking ERα expression specifically in POMC neurons (POMC-ERα -/- ). Female POMC-ERα -/- and control mice were ovariectomized (OVX) and treated with vehicle or estradiol (0.5 μg/d) for 6 weeks. As expected, estradiol treatment increased the cortical bone thickness in femur, the cortical bone mechanical strength in tibia and the trabecular bone volume fraction in both femur and vertebrae in OVX control mice. Importantly, the estrogenic responses were substantially increased in OVX POMC-ERα -/- mice compared with the estrogenic responses in OVX control mice for cortical bone thickness (+126 ± 34%, P < .01) and mechanical strength (+193 ± 38%, P < .01). To test whether ERα in VMN is involved in the regulation of bone mass, ERα was silenced using an adeno-associated viral vector. Silencing of ERα in hypothalamic VMN resulted in unchanged bone mass. In conclusion, mice lacking ERα in POMC neurons display enhanced estrogenic response on cortical bone mass and mechanical strength. We propose that the balance between inhibitory effects of central ERα activity in hypothalamic POMC neurons in ARC and stimulatory peripheral ERaα-mediated effects in bone determines cortical bone mass in female mice.
  •  
6.
  •  
7.
  • Wu, Jianyao, et al. (author)
  • Enzalutamide Reduces the Bone Mass in the Axial but not the Appendicular Skeleton in Male Mice.
  • 2016
  • In: Endocrinology. - : The Endocrine Society. - 1945-7170 .- 0013-7227. ; 157:2, s. 969-977
  • Journal article (peer-reviewed)abstract
    • Testosterone is a crucial regulator of the skeleton but the role of the androgen receptor (AR) for the maintenance of the adult male skeleton is unclear. In the present study, the role of the AR for bone metabolism and skeletal growth after sexual maturation was evaluated by means of the drug enzalutamide, which is a new AR antagonist used in the treatment of prostate cancer patients. Nine-week-old male mice were treated with 10, 30, or 100 mg/kg/day of enzalutamide for 21 days or were surgically castrated, and compared with vehicle-treated gonadal intact mice. Although orchidectomy (orx) reduced the cortical bone thickness and trabecular bone volume fraction in the appendicular skeleton, these parameters were unaffected by enzalutamide. In contrast, both enzalutamide and orx reduced the bone mass in the axial skeleton as demonstrated by reduced lumbar spine areal bone mineral density (p<0.001) and trabecular bone volume fraction in L5 vertebrae (p<0.001) compared with vehicle-treated gonadal intact mice. A compression test of the L5 vertebrae revealed that the mechanical strength in the axial skeleton was significantly reduced by enzalutamide (maximal load at failure, -15.3±3.5%; p<0.01). The effects of enzalutamide in the axial skeleton were associated with a high bone turnover. In conclusion, enzalutamide reduces the bone mass in the axial but not the appendicular skeleton in male mice after sexual maturation. We propose that the effect of testosterone on the axial skeleton in male mice is mainly mediated via the AR.
  •  
8.
  • Antonson, P., et al. (author)
  • aP2-Cre-Mediated Inactivation of Estrogen Receptor Alpha Causes Hydrometra
  • 2014
  • In: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 9:1
  • Journal article (peer-reviewed)abstract
    • In this study we describe the reproductive phenotypes of a novel mouse model in which Cre-mediated deletion of ER alpha is regulated by the aP2 (fatty acid binding protein 4) promoter. ER alpha-floxed mice were crossed with transgenic mice expressing Cre-recombinase under the control of the aP2 promoter to generate aP2-Cre/ER alpha(flox/flox) mice. As expected, ER alpha mRNA levels were reduced in adipose tissue, but in addition we also detected an 80% reduction of ER alpha levels in the hypothalamus of aP2-Cre/ER alpha(flox/flox) mice. Phenotypic analysis revealed that aP2-Cre/ER alpha(flox/flox) female mice were infertile. In line with this, aP2-Cre/ER alpha(flox/flox) female mice did not cycle and presented 3.8-fold elevated estrogen levels. That elevated estrogen levels were associated with increased estrogen signaling was evidenced by increased mRNA levels of the estrogen-regulated genes lactoferrin and aquaporin 5 in the uterus. Furthermore, aP2-Cre/ER alpha(flox/flox) female mice showed an accumulation of intra-uterine fluid, hydrometra, without overt indications for causative anatomical anomalies. However, the vagina and cervix displayed advanced keratosis with abnormal quantities of accumulating squamous epithelial cells suggesting functional obstruction by keratin plugs. Importantly, treatment of aP2-Cre/ER alpha(flox/flox) mice with the aromatase inhibitor Letrozole caused regression of the hydrometra phenotype linking increased estrogen levels to the observed phenotype. We propose that in aP2-Cre/ER alpha(flox/flox) mice, increased serum estrogen levels cause over-stimulation in the uterus and genital tracts resulting in hydrometra and vaginal obstruction.
  •  
9.
  • Antonson, P., et al. (author)
  • Identification of proteins highly expressed in uterine fluid from mice with hydrometra
  • 2015
  • In: Biochemical and Biophysical Research Communications. - : Elsevier BV. - 0006-291X .- 1090-2104. ; 466:4, s. 650-655
  • Journal article (peer-reviewed)abstract
    • Estrogen receptor alpha (ER alpha) is an important regulator of the estrous cycle and mice with global ER alpha deletion, as well as some conditional knockout mouse lines, have an interruption in the estrous cycle. In this study we observed that conditional ERa knockout mice where the Cre gene is regulated by the rat insulin promoter (RIP), RIP-Cre/ER alpha(KO) mice, have a 3.7-fold increase in serum 17 beta-estradiol levels, blocked estrous cycle, and develop a fluid-filled uterus (hydrometra). Using a proteomics approach, we identified three proteins, lactoferrin, complement C3 and chitinase 3-like protein 1 (CHI3L1), as highly expressed proteins in hydrometra fluid. The mRNA levels of the corresponding genes were more than 50-fold higher in RIP-Cre/ER alpha(KO) uterus compared to controls. High expression of CHI3L1 in the uterine fluid was not reflected as elevated levels in the serum. The high expression of lactoferrin, complement C3 and CHI3L1 in the uterine fluid, in association with elevated estrogen levels, prompted us to address if the expression of these genes is related to reproduction. However, gonadotropin treatment of mice reduced the uterine expression of these genes in a model of in vitro fertilization. Our findings identify lactoferrin, complement C3 and CHI3L1 as highly expressed proteins in hydrometra fluid in association with chronically elevated serum estradiol levels. (C) 2015 Elsevier Inc. All rights reserved.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 35
Type of publication
journal article (30)
conference paper (5)
Type of content
peer-reviewed (31)
other academic/artistic (4)
Author/Editor
Ohlsson, Claes, 1965 (18)
Windahl, Sara H, 197 ... (16)
Lagerquist, Marie K (10)
Ohlsson, C. (9)
Farman, Helen H., 19 ... (8)
Gustafsson, J. A. (7)
show more...
Carlsten, Hans, 1954 (7)
Sjögren, Klara, 1970 (7)
Evans, M. (6)
Andersson, G (6)
Movérare-Skrtic, Sof ... (6)
Jager, KJ (5)
Dekker, FW (5)
Chesnaye, NC (5)
Caskey, FJ (5)
Torino, C (5)
Szymczak, M (5)
Drechsler, C (5)
Wanner, C (5)
Poutanen, Matti (4)
Engdahl, Cecilia, 19 ... (4)
Vandenput, Liesbeth, ... (3)
Stenvinkel, P (3)
Chambon, P. (3)
Savendahl, L (3)
Gustafsson, J (3)
Dahlman-Wright, K (3)
Almquist, T (3)
Antonson, P (3)
Carlsten, H (3)
Irving, GF (3)
Hultenby, K (2)
Pettersson, K (2)
Porto, G (2)
Inzunza, J (2)
Gustafsson, JA (2)
Lindholm, Catharina, ... (2)
Andersson, N (2)
Stubelius, Alexandra ... (2)
Islander, Ulrika, 19 ... (2)
Lagerquist, Marie (2)
Hollberg, K (2)
Norgard, M (2)
Tivesten, Åsa, 1969 (2)
Andersson, Niklas, 1 ... (2)
Lindberg, Marie K, 1 ... (2)
Hoogeveen, EK (2)
Ryberg, Henrik, 1971 (2)
Humire, P. (2)
Kindblom, Jenny, 197 ... (2)
show less...
University
Karolinska Institutet (27)
University of Gothenburg (18)
Lund University (2)
Chalmers University of Technology (2)
Uppsala University (1)
Mälardalen University (1)
show more...
Örebro University (1)
Marie Cederschiöld högskola (1)
Red Cross University College (1)
show less...
Language
English (35)
Research subject (UKÄ/SCB)
Medical and Health Sciences (18)
Natural sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view