SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Winkler Roland) "

Search: WFRF:(Winkler Roland)

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • de Jong, Roelof S., et al. (author)
  • 4MOST-4-metre Multi-Object Spectroscopic Telescope
  • 2014
  • In: Ground-based and Airborne Instrumentation for Astronomy V. - : SPIE. - 0277-786X .- 1996-756X. ; 9147
  • Conference paper (peer-reviewed)abstract
    • 4MOST is a wide-field, high-multiplex spectroscopic survey facility under development for the VISTA telescope of the European Southern Observatory (ESO). Its main science drivers are in the fields of galactic archeology, high-energy physics, galaxy evolution and cosmology. 4MOST will in particular provide the spectroscopic complements to the large area surveys coming from space missions like Gaia, eROSITA, Euclid, and PLATO and from ground-based facilities like VISTA, VST, DES, LSST and SKA. The 4MOST baseline concept features a 2.5 degree diameter field-of-view with similar to 2400 fibres in the focal surface that are configured by a fibre positioner based on the tilting spine principle. The fibres feed two types of spectrographs; similar to 1600 fibres go to two spectrographs with resolution R> 5000 (lambda similar to 390-930 nm) and similar to 800 fibres to a spectrograph with R> 18,000 (lambda similar to 392-437 nm & 515-572 nm & 605-675 nm). Both types of spectrographs are fixed-configuration, three-channel spectrographs. 4MOST will have an unique operations concept in which 5 year public surveys from both the consortium and the ESO community will be combined and observed in parallel during each exposure, resulting in more than 25 million spectra of targets spread over a large fraction of the southern sky. The 4MOST Facility Simulator (4FS) was developed to demonstrate the feasibility of this observing concept. 4MOST has been accepted for implementation by ESO with operations expected to start by the end of 2020. This paper provides a top-level overview of the 4MOST facility, while other papers in these proceedings provide more detailed descriptions of the instrument concept[1], the instrument requirements development[2], the systems engineering implementation[3], the instrument model[4], the fibre positioner concepts[5], the fibre feed[6], and the spectrographs[7].
  •  
2.
  • Haynes, Roger, et al. (author)
  • The 4MOST instrument concept overview
  • 2014
  • In: Ground-based and Airborne Instrumentation for Astronomy V. - : SPIE. - 0277-786X .- 1996-756X. ; 9147, s. 91476-91476
  • Conference paper (peer-reviewed)abstract
    • The 4MOST([1]) instrument is a concept for a wide-field, fibre-fed high multiplex spectroscopic instrument facility on the ESO VISTA telescope designed to perform a massive (initially >25x10(6) spectra in 5 years) combined all-sky public survey. The main science drivers are: Gaia follow up of chemo-dynamical structure of the Milky Way, stellar radial velocities, parameters and abundances, chemical tagging; eROSITA follow up of cosmology with x-ray clusters of galaxies, X-ray AGN/galaxy evolution to z similar to 5, Galactic X-ray sources and resolving the Galactic edge; Euclid/LSST/SKA and other survey follow up of Dark Energy, Galaxy evolution and transients. The surveys will be undertaken simultaneously requiring: highly advanced targeting and scheduling software, also comprehensive data reduction and analysis tools to produce high-level data products. The instrument will allow simultaneous observations of similar to 1600 targets at R similar to 5,000 from 390-900nm and similar to 800 targets at R>18,000 in three channels between similar to 395-675nm (channel bandwidth: 45nm blue, 57nm green and 69nm red) over a hexagonal field of view of similar to 4.1 degrees2. The initial 5-year 4MOST survey is currently expect to start in 2020. We provide and overview of the 4MOST systems: opto-mechanical, control, data management and operations concepts; and initial performance estimates.
  •  
3.
  • Bucciarelli, Saskia, et al. (author)
  • Dramatic influence of patchy attractions on short-time protein diffusion under crowded conditions
  • 2016
  • In: Science Advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 2:12, s. 1601432-1601432
  • Journal article (peer-reviewed)abstract
    • In the dense and crowded environment of the cell cytoplasm, an individual protein feels the presence of and interacts with all surrounding proteins. While we expect this to strongly influence the short-time diffusion coefficient Ds of proteins on length scales comparable to the nearest-neighbor distance, this quantity is difficult to assess experimentally. We demonstrate that quantitative information about Ds can be obtained from quasi-elastic neutron scattering experiments using the neutron spin echo technique. We choose two well-characterized and highly stable eye lens proteins, bovine α-crystallin and γB-crystallin, and measure their diffusion at concentrations comparable to those present in the eye lens. While diffusion slows down with increasing concentration for both proteins, we find marked variations that are directly linked to subtle differences in their interaction potentials. A comparison with computer simulations shows that anisotropic and patchy interactions play an essential role in determining the local short-time dynamics. Hence, our study clearly demonstrates the enormous effect that weak attractions can have on the short-time diffusion of proteins at concentrations comparable to those in the cellular cytosol.
  •  
4.
  • De Jong, Roelof S., et al. (author)
  • 4MOST : The 4-metre Multi-Object Spectroscopic Telescope project at preliminary design review
  • 2016
  • In: Ground-Based and Airborne Instrumentation for Astronomy VI. - : SPIE. - 1996-756X .- 0277-786X. - 9781510601956 ; 9908
  • Conference paper (peer-reviewed)abstract
    • We present an overview of the 4MOST project at the Preliminary Design Review. 4MOST is a major new wide-field, high-multiplex spectroscopic survey facility under development for the VISTA telescope of ESO. 4MOST has a broad range of science goals ranging from Galactic Archaeology and stellar physics to the high-energy physics, galaxy evolution, and cosmology. Starting in 2021, 4MOST will deploy 2436 fibres in a 4.1 square degree field-of-view using a positioner based on the tilting spine principle. The fibres will feed one high-resolution (R∼20,000) and two medium resolution (R∼5000) spectrographs with fixed 3-channel designs and identical 6k x 6k CCD detectors. 4MOST will have a unique operations concept in which 5-year public surveys from both the consortium and the ESO community will be combined and observed in parallel during each exposure. The 4MOST Facility Simulator (4FS) was developed to demonstrate the feasibility of this observing concept, showing that we can expect to observe more than 25 million objects in each 5-year survey period and will eventually be used to plan and conduct the actual survey.
  •  
5.
  • Haenssle, H A, et al. (author)
  • Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists.
  • 2018
  • In: Annals of Oncology. - : Elsevier BV. - 1569-8041 .- 0923-7534. ; 29:8, s. 1836-1842
  • Journal article (peer-reviewed)abstract
    • Deep learning convolutional neural networks (CNN) may facilitate melanoma detection, but data comparing a CNN's diagnostic performance to larger groups of dermatologists are lacking.Google's Inception v4 CNN architecture was trained and validated using dermoscopic images and corresponding diagnoses. In a comparative cross-sectional reader study a 100-image test-set was used (level-I: dermoscopy only; level-II: dermoscopy plus clinical information and images). Main outcome measures were sensitivity, specificity and area under the curve (AUC) of receiver operating characteristics (ROC) for diagnostic classification (dichotomous) of lesions by the CNN versus an international group of 58 dermatologists during level-I or -II of the reader study. Secondary end points included the dermatologists' diagnostic performance in their management decisions and differences in the diagnostic performance of dermatologists during level-I and -II of the reader study. Additionally, the CNN's performance was compared with the top-five algorithms of the 2016 International Symposium on Biomedical Imaging (ISBI) challenge.In level-I dermatologists achieved a mean (±standard deviation) sensitivity and specificity for lesion classification of 86.6% (±9.3%) and 71.3% (±11.2%), respectively. More clinical information (level-II) improved the sensitivity to 88.9% (±9.6%, P=0.19) and specificity to 75.7% (±11.7%, P<0.05). The CNN ROC curve revealed a higher specificity of 82.5% when compared with dermatologists in level-I (71.3%, P<0.01) and level-II (75.7%, P<0.01) at their sensitivities of 86.6% and 88.9%, respectively. The CNN ROC AUC was greater than the mean ROC area of dermatologists (0.86 versus 0.79, P<0.01). The CNN scored results close to the top three algorithms of the ISBI 2016 challenge.For the first time we compared a CNN's diagnostic performance with a large international group of 58 dermatologists, including 30 experts. Most dermatologists were outperformed by the CNN. Irrespective of any physicians' experience, they may benefit from assistance by a CNN's image classification.This study was registered at the German Clinical Trial Register (DRKS-Study-ID: DRKS00013570; https://www.drks.de/drks_web/).
  •  
6.
  • Hong, Liang, et al. (author)
  • Structure and Dynamics of a Compact State of a Multidomain Protein, the Mercuric Ion Reductase
  • 2014
  • In: Biophysical Journal. - : Elsevier BV. - 1542-0086 .- 0006-3495. ; 107:2, s. 393-400
  • Journal article (peer-reviewed)abstract
    • The functional efficacy of colocalized, linked protein domains is dependent on linker flexibility and system compaction. However, the detailed characterization of these properties in aqueous solution presents an enduring challenge. Here, we employ a novel, to our knowledge, combination of complementary techniques, including small-angle neutron scattering, neutron spin-echo spectroscopy, and all-atom molecular dynamics and coarse-grained simulation, to identify and characterize in detail the structure and dynamics of a compact form of mercuric ion reductase (MerA), an enzyme central to bacterial mercury resistance. MerA possesses metallochaperone-like N-terminal domains (NmerA) tethered to its catalytic core domain by linkers. The NmerA domains are found to interact principally through electrostatic interactions with the core, leashed by the linkers so as to subdiffuse on the surface over an area close to the core C-terminal Hg(II)-binding cysteines. How this compact, dynamical arrangement may facilitate delivery of Hg(II) from NmerA to the core domain is discussed.
  •  
7.
  • Koppe, Cordelia, et al. (author)
  • Reduction of arteriosclerotic nanoplaque formation and size by n-3 fatty acids in patients after valvular defect operation
  • 2009
  • In: Forschende Komplementärmedizin. - : S. Karger AG. - 1424-7364 .- 1424-7372. ; 16:4, s. 237-245
  • Journal article (peer-reviewed)abstract
    • BACKGROUND/METHODS: Coating a silica surface with the isolated lipoprotein receptor heparan sulfate proteoglycan (HS-PG) from arterial endothelium and vascular matrices, we could observe the very earliest stages of arteriosclerotic plaque development by ellipsometric techniques in vitro (patent EP 0 946 876). This so-called nanoplaque formation is represented by the ternary aggregational complex of the HS-PG receptor, lipoprotein particles and calcium ions. The model was validated in several clinical studies on statins in cardiovascular high-risk patients applying their native blood lipoprotein fractions. RESULTS: In 7 patients who had undergone a valvular defect operation, the reduction of arteriosclerotic nanoplaque formation in normal Krebs solution amounted to 6.1 +/- 2.3% (p < 0.0156) and of nanoplaque size to 37.5 +/- 13.2% (p < 0.0312), respectively, after a 3-month therapy with n-3 fatty acids (3 ..3 g daily, Ameu 500 mg). Additionally, the quotient oxLDL/LDL was lowered by 6.8 +/- 2.1% (p < 0.0166), the MDA concentration remained unchanged and the lipoprotein(a) concentration decreased by 15.8 +/- 5.6% (p < 0.0469) in the patients' blood. The concentration of the nanoplaque promoting particles VLDL and total triglycerides was diminished by 34.1 +/- 11.6% (p < 0.0469) and 26.7 +/- 10.8% (p < 0.0156), respectively. Furthermore, the ratio of the strongly atherogenic small dense to the total LDL cholesterol (LDL5+LDL6)/LDLtot decreased by 9.9 +/- 3.0% (p < 0.0174). CONCLUSIONS: A combinatorial regression analysis revealed a basis for a mechanistic explanation of nanoplaque reduction under n-3 fatty acid treatment. This effect was possibly due to the beneficial changes in lipid concentrations and an attenuation of the risk factors oxLDL/LDL and (LDL5+LDL6)/LDLtot.
  •  
8.
  • Myung, Jin Suk, et al. (author)
  • Weak Shape Anisotropy Leads to a Nonmonotonic Contribution to Crowding, Impacting Protein Dynamics under Physiologically Relevant Conditions
  • 2018
  • In: The Journal of Physical Chemistry Part B. - : American Chemical Society (ACS). - 1520-5207 .- 1520-6106. ; 122
  • Journal article (peer-reviewed)abstract
    • The effect of a nonspherical particle shape on the dynamics in crowded solutions presents a significant challenge for a comprehensive understanding of interaction and structural relaxation in biological and soft matter. We report that small deviations from a spherical shape induce a nonmonotonic contribution to the crowding effect on the short-time cage diffusion compared with spherical systems, using molecular dynamics simulations with mesoscale hydrodynamics of a multiparticle collision dynamics fluid in semidilute systems with volume fractions smaller than 0.35. We show that the nonmonotonic effect due to anisotropy is caused by the combination of a reduced relative mobility over the entire concentration range and a looser and less homogeneous cage packing of nonspherical particles. Our finding stresses that nonsphericity induces new complexity, which cannot be accounted for in effective sphere models, and is of great interest in applications such as formulations as well as for the fundamental understanding of soft matter in general and crowding effects in living cells in particular.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view