SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Winnberg A.) "

Search: WFRF:(Winnberg A.)

  • Result 1-10 of 21
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  • Highlights from the first year of Odin observations
  • 2003
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 402, s. L39-L46
  • Journal article (peer-reviewed)abstract
    • Key Odin operational and instrumental features and highlights from our sub-millimetre and millimetre wave observations of H2O, H218O, NH3, 15NH3 and O2 are presented, with some insights into accompanying Odin Letters in this A&A issue. We focus on new results where Odin's high angular resolution, high frequency resolution, large spectrometer bandwidths, high sensitivity or/and frequency tuning capability are crucial: H2O mapping of the Orion KL, W3, DR21, S140 regions, and four comets; H2O observations of Galactic Centre sources, of shock enhanced H2O towards the SNR IC443, and of the candidate infall source IRAS 16293-2422; H218O detections in Orion KL and in comet Ikeya-Zhang; sub-mm detections of NH3 in Orion KL (outflow, ambient cloud and bar) and ρ Oph, and very recently, of 15NH3 in~Orion KL. Simultaneous sensitive searches for the 119 GHz line of O2 have resulted in very low abundance limits, which are difficult to accomodate in chemical models. We also demonstrate, by means of a quantitative comparison of Orion KL H2O results, that the Odin and SWAS observational data sets are very consistently calibrated. Odin is a Swedish-led satellite project funded jointly by the Swedish National Space Board (SNSB), the Canadian Space Agency (CSA), the National Technology Agency of Finland (Tekes), and the Centre National d'études Spatiales (CNES, France). The Swedish Space Corporation (SSC) has been the prime industrial contractor, and is also responsible for the satellite operation from its Odin Mission Control Centre at SSC in Solna and its Odin Control Centre at ESRANGE near Kiruna in northern Sweden. See also the SNSB Odin web page: http://www.snsb.se/eng_odin_intro.shtml
  •  
4.
  • Olofsson, Henrik, 1972, et al. (author)
  • CO line observations of OH/IR stars in the inner Galactic Bulge: Characteristics of stars at the tip of the AGB
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 665
  • Journal article (peer-reviewed)abstract
    • Context. OH/IR stars are examples of late stellar evolution on the asymptotic giant branch (AGB), and they are, as such, important objects to study. They are also excellent probes of stellar populations, in particular in regions of high interstellar extinction such as the central regions of our Galaxy. Aims. Our goal is to characterise the stellar and circumstellar properties of high-mass-loss-rate OH/IR stars in the inner Galactic Bulge using the Atacama Large Millimeter/submillimeter Interferometer (ALMA). Methods. Rotational lines of (CO)-C-12 and (CO)-C-13, as well as a millimetre-wave continuum, have been observed for a sample of 22 OH/IR stars in directions within 2 degrees of the Galactic Centre. Photometry data (approximate to 1-30 mu m) have been gathered from the literature to construct spectral energy distributions (SEDs) and to determine pulsational variability. Radiative transfer models have been used to interpret the line and photometry data. Results. All stars in the sample were detected in at least one CO line, and eight objects were detected in 324 GHz continuum. Based on luminosity criteria, the sample is divided into 17 objects that most likely lie within the inner Galactic Bulge, and five objects that are most likely foreground objects. The median luminosity of the inner-Galactic-Bulge sub-sample, 5600 L-circle dot, corresponds to an initial mass in the range 1.2-1.6 M-circle dot, indicating that these inner-Galactic-Bulge OH/IR stars descend from solar-type stars. The objects in this sub-sample are further divided into two classes based on their SED characteristics: Eleven objects have SEDs that are well matched by models invoking dust envelopes extending from a few stellar radii and outwards, while six objects are better modelled as having detached dust envelopes with inner radii in the range 200-600 au and warmer central stars. The former objects have periodic variability, while the latter objects are predominantly non-periodic. The median gas-mass-loss rate, gas terminal expansion velocity, gas-to-dust mass ratio, and circumstellar (CO)-C-12/(CO)-C-13 abundance ratio have been estimated to be 2 x 10(-5) M-circle dot yr(-1), 18 km s(-1), 200 (excluding the sources with detached dust envelopes, which show markedly lower gas-to-dust ratios), and 5, respectively, for the inner-Galactic-Bulge sub-sample. All line brightness distributions are resolved at an angular scale of approximate to 0 ''.15, but only two objects show a structure in their circumstellar envelopes at our resolution and sensitivity. In both cases, this structure takes the form of a cavity and a bipolar morphology. Conclusions. The inner-Galactic-Bulge sub-sample consists of high mass-loss-rate stars that descend from solar-type progenitors and that lie near the tip of the AGB. Some of the sample stars may have recently ceased mass loss and, hence, have begun to evolve beyond the AGB, as evidenced by a change in circumstellar characteristics and indications of warmer central stars. The inferred very low stellar C-12/C-13 isotope ratios are indicative of CNO-cycle nuclear processing, and they are most likely established at the surfaces of the stars during the first dredge-up on the red giant branch since these stars are not expected to experience hot-bottom burning. The inner-Galactic-Bulge OH/IR stars studied here constitute an excellent sample of equidistant objects for the purpose of understanding the evolution of the mass-loss-rate characteristics at the tip of the AGB.
  •  
5.
  • Sandqvist, Aa., et al. (author)
  • Odin observations of H2O in the Galactic Centre
  • 2003
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 402, s. L63-L67
  • Journal article (peer-reviewed)abstract
    • The Odin satellite has been used to detect emission and absorption in the 557-GHz H216O line in the Galactic Centre towards the Sgr Astar Circumnuclear Disk (CND), and the Sgr A +20 km s-1 and +50 km s-1 molecular clouds. Strong broad H2O emission lines have been detected in all three objects. Narrow H2O absorption lines are present at all three positions and originate along the lines of sight in the 3-kpc Spiral Arm, the -30 km s-1 Spiral Arm and the Local Sgr Spiral Arm. Broad H2O absorption lines near -130 km s-1 are also observed, originating in the Expanding Molecular Ring. A new molecular feature (the ``High Positive Velocity Gas'' - HPVG) has been identified in the positive velocity range of ~+120 to +220 km s-1, seen definitely in absorption against the stronger dust continuum emission from the +20 km s-1 and +50 km s-1 clouds and possibly in emission towards the position of Sgr Astar CND. The 548-GHz H218O isotope line towards the CND is not detected at the 0.02 K (rms) level. Based on observations with Odin, a Swedish-led satellite project funded jointly by the Swedish National Space Board (SNSB), the Canadian Space Agency (CSA), the National Technology Agency of Finland (Tekes) and Centre National d'Études Spatiales (CNES). The Swedish Space Corporation was the industrial prime contractor and is also responsible for the satellite operation.
  •  
6.
  • Crovisier, J., et al. (author)
  • The chemical composition of 9P/tempel 1 from radio observations
  • 2009
  • In: ESO Astrophysics Symposia. - Berlin, Heidelberg : Springer Berlin Heidelberg. - 1431-2433 .- 1611-6143. - 9783540769583 ; 2009, s. 243-248
  • Conference paper (peer-reviewed)abstract
    • In 2005, as part of a world-wide multi-wavelength investigation of comet 9P/Tempel 1 in support to the Deep Impact mission, we conducted radio spectroscopic observations with the Nançay radio telescope, the Odin satellite, the CSO 10-m and the IRAM 30-m telescopes. We report here our results concerning the chemical composition of the comet. The relative abundances of the detected species (H2O, CH3OH, H2S, HCN) or their upper limits (CO, H2CO, CS) are comparable to the mean values observed in other comets. No significant changes of the outgassing rates (except possibly for CH3OH) or of the molecular abundances were observed following the impact.
  •  
7.
  •  
8.
  • Goode-Romero, Guillermo, et al. (author)
  • New information of dopaminergic agents based on quantum chemistry calculations
  • 2020
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 10:1
  • Journal article (peer-reviewed)abstract
    • Dopamine is an important neurotransmitter that plays a key role in a wide range of both locomotive and cognitive functions in humans. Disturbances on the dopaminergic system cause, among others, psychosis, Parkinson's disease and Huntington's disease. Antipsychotics are drugs that interact primarily with the dopamine receptors and are thus important for the control of psychosis and related disorders. These drugs function as agonists or antagonists and are classified as such in the literature. However, there is still much to learn about the underlying mechanism of action of these drugs. The goal of this investigation is to analyze the intrinsic chemical reactivity, more specifically, the electron donor-acceptor capacity of 217 molecules used as dopaminergic substances, particularly focusing on drugs used to treat psychosis. We analyzed 86 molecules categorized as agonists and 131 molecules classified as antagonists, applying Density Functional Theory calculations. Results show that most of the agonists are electron donors, as is dopamine, whereas most of the antagonists are electron acceptors. Therefore, a new characterization based on the electron transfer capacity is proposed in this study. This new classification can guide the clinical decision-making process based on the physiopathological knowledge of the dopaminergic diseases.
  •  
9.
  •  
10.
  • Karlsson, Roland, et al. (author)
  • Hydroxyl, water, ammonia, carbon monoxide, and neutral carbon towards the Sagittarius A complex VLA, Odin, and SEST observations
  • 2013
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 554
  • Journal article (peer-reviewed)abstract
    • Aims. The Sagittarius A complex in the Galactic centre comprises an ensemble of molecular clouds of different species with a variety of geometrical and kinematic properties. This work aims to study molecular abundances, morphology, and kinematics by comparing hydroxyl, water, carbon monoxide, ammonia, and atomic carbon and some of their isotopologues, in the +50 km s(-1) cloud, the circumnuclear disk (CND), the +20 km s(-1) cloud, the expanding molecular ring and the line-of-sight spiral arm features, including the Local/Sgr arm, the -30 km s(-1) arm, and the 3-kpc arm. Methods. We observed the +50 km s(-1) cloud, the CND and the +20 km s(-1) cloud, and other selected positions at the Galactic centre with the VLA, and the Odin satellite. The VLA was used to map the 1665 and 1667 MHz OH lambda doublet main lines of the (H-2(3/2)) state, and the Odin satellite was used to map the 557 GHz H2O (1(10)-1(01)) line as well as to observe the 548 GHz (H2O)-O-18 (1(10)-1(01)) line, the 572 GHz NH3 (1(0)-0(0)) line, the 576 GHz CO J = 5-4 line and the 492 GHz C-I (P-3(1)-P-3(0)) line. Furthermore, the SEST was used to map a 4'.5 x 6' region of the SgrAcomplex in the 220 GHz (CO)-O-18 J = 2-1 line. Results. Strong OH absorption, H2O emission and absorption lines were seen at all observed positions, and the (H2O)-O-18 line was detected in absorption towards the +50 km s(-1) cloud, the CND, the +20 km s(-1)cloud, the expanding molecular ring, and the 3-kpc arm. Strong CO J = 5-4, (CO)-O-18 J = 2-1, and neutral carbon C-I emissions were seen towards the +50 and +20 km s(-1) clouds. NH3 was only detected in weak absorption originating in the line-of-sight spiral arm features. The abundances of OH and H2O in the +50 and +20 km s(-1) clouds reflect the different physical environments in the clouds, where shocks and star formation prevail in the +50 km s(-1) cloud and giving rise to a higher rate of H2O production there than in the +20 km s(-1) cloud. In the CND, cloud collisions and shocks are frequent, and the CND is also subject to intense UV-radiation emanating from the supermassive black hole and the central star cluster. The CND is rich in (HO)-O-2 and OH, and these abundances are considerably higher than in the +50 and +20 km s(-1) clouds. We compare our estimated abundances of OH, H2O, and NH3 with similar and differing results for some other sources available in the literature. As compared to the quiescent cloud values of a few x 10(-9), or lower, the H2O abundance is markedly enhanced in the front sides of the Sgr A molecular cloud cores, (2-7) x 10(-8), as observed in absorption, and highest in the CND. A similar abundance enhancement is seen in OH. The likely explanation is PDR chemistry including grain surface reactions, and perhaps also the influence of shocks. In the redward high-velocity line wings of the +50 and +20 km s(-1) clouds and the CND, the H2O abundances are estimated to be (1-6) x 10(-6) or higher, i.e., similar to the water abundances in outflows of the Orion KL and DR21 molecular clouds, which are said to be caused by the combined action of shock desorption from icy grain mantles and high-temperature, gas-phase shock chemistry.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 21

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view