SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Wistrand C) "

Search: WFRF:(Wistrand C)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Kleinhans, C., et al. (author)
  • A perfusion bioreactor system efficiently generates cell-loaded bone substitute materials for addressing critical size bone defects
  • 2015
  • In: Biotechnology Journal. - : Wiley-VCH Verlagsgesellschaft. - 1860-6768 .- 1860-7314. ; 10:11, s. 1727-1738
  • Journal article (peer-reviewed)abstract
    • Critical size bone defects and non-union fractions are still challenging to treat. Cell-loaded bone substitutes have shown improved bone ingrowth and bone formation. However, a lack of methods for homogenously colonizing scaffolds limits the maximum volume of bone grafts. Additionally, therapy robustness is impaired by heterogeneous cell populations after graft generation. Our aim was to establish a technology for generating grafts with a size of 10.5 mm in diameter and 25 mm of height, and thus for grafts suited for treatment of critical size bone defects. Therefore, a novel tailor-made bioreactor system was developed, allowing standardized flow conditions in a porous poly(L-lactide-co-caprolactone) material. Scaffolds were seeded with primary human mesenchymal stem cells derived from four different donors. In contrast to static experimental conditions, homogenous cell distributions were accomplished under dynamic culture. Additionally, culture in the bioreactor system allowed the induction of osteogenic lineage commitment after one week of culture without addition of soluble factors. This was demonstrated by quantitative analysis of calcification and gene expression markers related to osteogenic lineage. In conclusion, the novel bioreactor technology allows efficient and standardized conditions for generating bone substitutes that are suitable for the treatment of critical size defects in humans.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  • Suliman, S., et al. (author)
  • Nanodiamond modified copolymer scaffolds affects tumour progression of early neoplastic oral keratinocytes
  • 2016
  • In: Biomaterials. - : Elsevier. - 0142-9612 .- 1878-5905. ; 95, s. 11-21
  • Journal article (peer-reviewed)abstract
    • This study aimed to evaluate the tumorigenic potential of functionalising poly(LLA-co-CL) scaffolds. The copolymer scaffolds were functionalised with nanodiamonds (nDP) or with nDP and physisorbed BMP-2 (nDP-PHY) to enhance osteoinductivity. Culturing early neoplastic dysplastic keratinocytes (DOKLuc) on nDP modified scaffolds reduced significantly their subsequent sphere formation ability and decreased significantly the cells' proliferation in the supra-basal layers of in vitro 3D oral neoplastic mucosa (3D-OT) when compared to DOKLuc previously cultured on nDP-PHY scaffolds. Using an in vivo non-invasive environmentally-induced oral carcinogenesis model, nDP scaffolds were observed to reduce bioluminescence intensity of tumours formed by DOKLuc + carcinoma associated fibroblasts (CAF). nDP modification was also found to promote differentiation of DOKLuc both in vitro in 3D-OT and in vivo in xenografts formed by DOKLuc alone. The nDP-PHY scaffold had the highest number of invasive tumours formed by DOKLuc + CAF outside the scaffold area compared to the nDP and control scaffolds. In conclusion, in vitro and in vivo results presented here demonstrate that nDP modified copolymer scaffolds are able to decrease the tumorigenic potential of DOKLuc, while confirming concerns for the therapeutic use of BMP-2 for reconstruction of bone defects in oral cancer patients due to its tumour promoting capabilities.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view