SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Wistrand Yuen Pikkei) "

Search: WFRF:(Wistrand Yuen Pikkei)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Olsson, Anna, et al. (author)
  • Efficacy of Antibiotic Combinations against Multidrug-Resistant Pseudomonas aeruginosa in Automated Time-Lapse Microscopy and Static Time-Kill Experiments
  • 2020
  • In: Antimicrobial Agents and Chemotherapy. - : AMER SOC MICROBIOLOGY. - 0066-4804 .- 1098-6596. ; 64:6
  • Journal article (peer-reviewed)abstract
    • Antibiotic combination therapy is used for severe infections caused by multidrug-resistant (MDR) Gram-negative bacteria, yet data regarding which combinations are most effective are lacking. This study aimed to evaluate the in vitro efficacy of polymyxin B in combination with 13 other antibiotics against four clinical strains of MDR Pseudomonas aeruginosa. We evaluated the interactions of polymyxin B in combination with amikacin, aztreonam, cefepime, chloramphenicol, ciprofloxacin, fosfomycin, linezolid, meropenem, minocycline, rifampin, temocillin, thiamphenicol, or trimethoprim by automated time-lapse microscopy using predefined cutoff values indicating inhibition of growth (<= 10(6) CFU/ml) at 24 h. Promising combinations were subsequently evaluated in static time-kill experiments. All strains were intermediate or resistant to polymyxin B, antipseudomonal beta-lactams, ciprofloxacin, and amikacin. Genes encoding beta-lactamases (e.g., bla(PAO) and bla(OXA-50)) and mutations associated with permeability and efflux were detected in all strains. In the time-lapse microscopy experiments, positive interactions were found with 39 of 52 antibiotic combination/bacterial strain setups. Enhanced activity was found against all four strains with polymyxin B used in combination with aztreonam, cefepime, fosfomycin, minocycline, thiamphenicol, and trimethoprim. Time-kill experiments showed additive or synergistic activity with 27 of the 39 tested polymyxin B combinations, most frequently with aztreonam, cefepime, and meropenem. Positive interactions were frequently found with the tested combinations, against strains that harbored several resistance mechanisms to the single drugs, and with antibiotics that are normally not active against P. aeruginosa. Further study is needed to explore the clinical utility of these combinations.
  •  
2.
  •  
3.
  •  
4.
  • Wistrand-Yuen, Pikkei, et al. (author)
  • A Multiplex Fluidic Chip for Rapid Phenotypic Antibiotic Susceptibility Testing
  • 2020
  • In: mBio. - : AMER SOC MICROBIOLOGY. - 2161-2129 .- 2150-7511. ; 11
  • Journal article (peer-reviewed)abstract
    • Many patients with severe infections receive inappropriate empirical treatment, and rapid detection of bacterial antibiotic susceptibility can improve clinical outcome and reduce mortality. To this end, we have developed a multiplex fluidic chip for rapid phenotypic antibiotic susceptibility testing of bacteria. A total of 21 clinical isolates of Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus were acquired from the EUCAST Development Laboratory and tested against amikacin, ceftazidime, and meropenem (Gram-negative bacteria) or gentamicin, ofloxacin, and tetracycline (Gram-positive bacteria). The bacterial samples were mixed with agarose and loaded in an array of growth chambers in the chip where bacterial microcolony growth was monitored over time using automated image analysis. MIC values were automatically obtained by tracking the growth rates of individual microcolonies in different regions of antibiotic gradients. Stable MIC values were obtained within 2 to 4 h, and the results showed categorical agreement with reference MIC values as determined by broth microdilution in 86% of the cases.
  •  
5.
  • Wistrand-Yuen, Pikkei, et al. (author)
  • Evaluation of polymyxin B in combination with 13 other antibiotics against carbapenemase-producing Klebsiella pneumoniae in time-lapse microscopy and time-kill experiments
  • 2020
  • In: Clinical Microbiology and Infection. - : Elsevier BV. - 1198-743X .- 1469-0691. ; 26:9, s. 1214-1221
  • Journal article (peer-reviewed)abstract
    • Objectives: This study aimed to explore the interactions of polymyxin B in combination with 13 other antibiotics against carbapenemase-producing Klebsiella pneumoniae. Methods: Five clinical isolates of multidrug-resistant K. pneumoniae producing KPC-2, KPC-3, NDM-1, OXA-48 and VIM-1 carbapenemases were used. Polymyxin B was tested alone and in combination with amikacin, aztreonam, cefepime, chloramphenicol, ciprofloxacin, fosfomycin, linezolid, meropenem, minocycline, rifampicin, temocillin, thiamphenicol and trimethoprim. Inhibition of growth during antibiotic exposure was evaluated in 24-hr automated time-lapse microscopy experiments. Combinations that showed positive interactions were subsequently evaluated in static time-kill experiments. Results: All strains carried multiple (>9) resistance genes as determined by whole-genome sequencing. In the initial screening the combination of polymyxin B and minocycline was most active with enhanced activity compared with the single antibiotics detected against all strains. Positive interactions were also observed with polymyxin B in combination with rifampicin and fosfomycin against four of five strains and less frequently with other antibiotics. Time-kill experiments demonstrated an additive or synergistic activity (1-2 log10 or >= 2 log(10) CFU/mL reduction, respectively, compared with the most potent single antibiotic) with 21 of 23 tested combinations. However, because of regrowth, only 13 combinations were synergistic at 24 hr. Combinations with minocycline or rifampicin were most active, each showing synergy and bacteriostatic or bactericidal effects resulting in 1.93-3.97 and 2.55-5.91 log(10) CFU/mL reductions, respectively, after 24 hr against four strains. Discussion: Polymyxin B in combination with minocycline, rifampicin or fosfomycin could be of potential clinical interest. Time-lapse microscopy showed some discrepancy in results compared with the time-kill data but was useful for screening purposes.
  •  
6.
  • Zhao, Chenyan, et al. (author)
  • Combination of polymyxin B and minocycline against multidrug-resistant Klebsiella pneumoniae : interaction quantified by pharmacokinetic/pharmacodynamic modelling from in vitro data
  • 2020
  • In: International Journal of Antimicrobial Agents. - : ELSEVIER. - 0924-8579 .- 1872-7913. ; 55:6
  • Journal article (peer-reviewed)abstract
    • Lack of effective treatment for multidrug-resistant Klebsiella pneumoniae (MDR-Kp) necessitates finding and optimising combination therapies of old antibiotics. The aims of this study were to quantify the combined effect of polymyxin B and minocycline by building an in silico semi-mechanistic pharmacokinetic/pharmacodynamic (PKPD) model and to predict bacterial kinetics when exposed to the drugs alone and in combination at clinically achievable unbound drug concentration-time profiles. A clinical K. pneumoniae strain resistant to polymyxin B [minimum inhibitory concentration (MIC) = 16 mg/L] and minocycline (MIC = 16 mg/L) was selected for extensive in vitro static time-kill experiments. The strain was exposed to concentrations of 0.0625-48 ? MIC, with seven samples taken per experiment for viable counts during 0-28 h. These observations allowed the development of the PKPD model. The final PKPD model included drug-induced adaptive resistance for both drugs. Both the minocycline-induced bacterial killing and resistance onset rate constants were increased when polymyxin B was co-administered, whereas polymyxin B parameters were unaffected. Predictions at clinically used dosages from the developed PKPD model showed no or limited antibacterial effect with monotherapy, whilst combination therapy kept bacteria below the starting inoculum for 20 h at high dosages [polymyxin B 2.5 mg/kg + 1.5 mg/kg every 12 h (q12h); minocycline 400 mg + 200 mg q12h, loading + maintenance doses]. This study suggests that polymyxin B and minocycline in combination may be of clinical benefit in the treatment of infections by MDR-Kp and for isolates that are non-susceptible to either drug alone. (C) 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view