SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Wu Changfeng) "

Sökning: WFRF:(Wu Changfeng)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Rong, Yu, et al. (författare)
  • Multicolor Fluorescent Semiconducting Polymer Dots with Narrow Emissions and High Brightness
  • 2013
  • Ingår i: ACS Nano. - : American Chemical Society. - 1936-0851 .- 1936-086X. ; 7:1, s. 376-384
  • Tidskriftsartikel (refereegranskat)abstract
    • Fluorescent semiconducting polymer dots (Pdots) have attracted great interest because of their superior characteristics as fluorescent probes, such as high fluorescence brightness, fast radiative rates, and excellent photostability. However, currently available Pdots generally exhibit broad emission spectra, which significantly limit their usefulness in many biological applications Involving multiplex detections. Here, we describe the design and development of multicolor narrow emissive Pdots based on different boron dipyrromethene (BODIPY) units. BODIPY-containing semiconducting polymers emitting at multiple wavelengths were synthesized and used as precursors for preparing the Pdots, where intraparticle energy transfer led to highly bright, narrow emissions. The emission full width at half-maximum of the resulting Pdots varies from 40 to 55 nm, which is 15-2 times narrower than those of conventional semiconducting polymer dots. BODIPY 520 Pdots were about an order of magnitude brighter than commercial Qdot 525 under identical laser excitation conditions. Fluorescence imaging and flow cytometry experiments indicate that the narrow emissions from these bright Pdots are promising for multiplexed biological detections.
  •  
2.
  • Rong, Yu, et al. (författare)
  • Yellow Fluorescent Semiconducting Polymer Dots with High Brightness, Small Size, and Narrow Emission for Biological Applications
  • 2014
  • Ingår i: ACS Macro Letters. - : American Chemical Society (ACS). - 2161-1653. ; 3:10, s. 1051-1054
  • Tidskriftsartikel (refereegranskat)abstract
    • Cross-linked polymer dots with intense and narrow yellow emission were designed using boron-dipyrromethene (BODIPY) polymer as the acceptor and poly[9,9-dioctylfluorenyl-2,7-diyl-co-1,4-benzo-{2,1-3}-thiadiazole] (PFBT) polymer as the donor. The emission fwhms of the polymer dots (Pdots) were 37 nm. CL-BODIPY 565 Pdots were about S times brighter than commercial quantum dots (Qdots) 565 under identical experimental conditions. Specific cellular targeting indicated that the small, bright, and narrow emissive CL-BODIPY 565 Pdots are promising probes for biological applications.
  •  
3.
  •  
4.
  • Sun, Kai, et al. (författare)
  • Size-Dependent Property and Cell Labeling of Semiconducting Polymer Dots
  • 2014
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 6:13, s. 10802-10812
  • Tidskriftsartikel (refereegranskat)abstract
    • Semiconducting polymer dots (Pdots) represent a new class of fluorescent nanoparticles for biological applications. In this study, we investigated their size-dependent fluorescence and cellular labeling properties. We demonstrate that the polymer conformation in solution phase largely affects the polymer folding and packing during the nanoparticle preparation process, resulting in solution-phase control over the fluorescence properties of semiconducting polymer nanoparticles. The resulting Pdots exhibit apparent size dependent absorption and emission, a characteristic feature of different chain packing behaviors due to the preparation conditions. Single-particle fluorescence imaging was employed to perform a side-by-side comparison on the Pdot brightness, indicating a quadratic dependence of single-particle brightness on particle size. Upon introducing a positively charged dye Nile blue, all the three type of Pdots were quenched very efficiently (K-sv greater than 1 x 10(7) M-1) in an applied quenching process at low dye concentrations, but exhibit apparent difference in quenching efficiency with increasing dye concentration. Furthermore, Pdots of different sizes were used for cell uptake and cellular labeling involving biotin-streptavidin interactions. Fluorescence imaging together with flow cytometry studies clearly showed size dependent labeling brightness. Small-sized Pdots appear to be more effective for immunolabeling of cell surface, whereas medium-sized Pdots exhibit the highest uptake efficiency. This study provides a concrete guidance for selecting appropriate particle size for biological imaging and sensing applications.
  •  
5.
  • Ye, Fangmao, et al. (författare)
  • Ratiometric temperature sensing with semiconducting polymer dots
  • 2011
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 133:21, s. 8146-8149
  • Tidskriftsartikel (refereegranskat)abstract
    • This communication describes ultrabright single-nanoparticle ratiometric temperature sensors based on semiconducting polymer dots (Pdots). We attached the temperature sensitive dye—Rhodamine B (RhB), whose emission intensity decreases with increasing temperature—within the matrix of Pdots. The as-prepared Pdot-RhB nanoparticle showed excellent temperature sensitivity and high brightness because it took advantage of the light harvesting and amplified energy transfer capability of Pdots. More importantly, the Pdot-RhB nanoparticle showed ratiometric temperature sensing under a single wavelength excitation and has a linear temperature sensing range that matches well with the physiologically relevant temperatures. We employed Pdot-RhB for measuring intracellular temperatures in a live-cell imaging mode. The exceptional brightness of Pdot-RhB allows this nanoscale temperature sensor to be used also as a fluorescent probe for cellular imaging.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy