SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Wu Cheng Cang) "

Search: WFRF:(Wu Cheng Cang)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  •  
3.
  •  
4.
  • Alexeyenko, Andrey, et al. (author)
  • Efficient de novo assembly of large and complex genomes by massively parallel sequencing of Fosmid pools
  • 2014
  • In: BMC Genomics. - : Springer Science and Business Media LLC. - 1471-2164. ; 15, s. 439-
  • Journal article (peer-reviewed)abstract
    • Background: Sampling genomes with Fosmid vectors and sequencing of pooled Fosmid libraries on the Illumina platform for massive parallel sequencing is a novel and promising approach to optimizing the trade-off between sequencing costs and assembly quality. Results: In order to sequence the genome of Norway spruce, which is of great size and complexity, we developed and applied a new technology based on the massive production, sequencing, and assembly of Fosmid pools (FP). The spruce chromosomes were sampled with similar to 40,000 bp Fosmid inserts to obtain around two-fold genome coverage, in parallel with traditional whole genome shotgun sequencing (WGS) of haploid and diploid genomes. Compared to the WGS results, the contiguity and quality of the FP assemblies were high, and they allowed us to fill WGS gaps resulting from repeats, low coverage, and allelic differences. The FP contig sets were further merged with WGS data using a novel software package GAM-NGS. Conclusions: By exploiting FP technology, the first published assembly of a conifer genome was sequenced entirely with massively parallel sequencing. Here we provide a comprehensive report on the different features of the approach and the optimization of the process. We have made public the input data (FASTQ format) for the set of pools used in this study: ftp://congenie.org/congenie/Nystedt_2013/Assembly/ProcessedData/FosmidPools/.(alternatively accessible via http://congenie.org/downloads).The software used for running the assembly process is available at http://research.scilifelab.se/andrej_alexeyenko/downloads/fpools/.
  •  
5.
  • Engel, Katja, et al. (author)
  • Meeting Report : 1st International Functional Metagenomics Workshop May 7-8, 2012, St. Jacobs, Ontario, Canada
  • 2013
  • In: Standards in Genomic Sciences. - : Springer Science and Business Media LLC. - 1944-3277. ; 8:1, s. 106-111
  • Journal article (other academic/artistic)abstract
    • This report summarizes the events of the 1st International Functional Metagenomics Workshop. The workshop was held on May 7 and 8, 2012, in St. Jacobs, Ontario, Canada and was focused on building an international functional metagenomics community, exploring strategic research areas, and identifying opportunities for future collaboration and funding. The workshop was initiated by researchers at the University of Waterloo with support from the Ontario Genomics Institute (OGI), Natural Sciences and Engineering Research Council of Canada (NSERC) and the University of Waterloo.
  •  
6.
  • Nasrin, Shamima, et al. (author)
  • Chloramphenicol Derivatives with Antibacterial Activity Identified by Functional Metagenomics
  • 2018
  • In: Journal of natural products (Print). - : American Chemical Society (ACS). - 0163-3864 .- 1520-6025. ; 81:6, s. 1321-1332
  • Journal article (peer-reviewed)abstract
    • A functional metagenomic approach identified novel and diverse soil-derived DNAs encoding inhibitors to methicillin-resistant Staphylococcus aureus (MRSA). A metagenomic DNA soil library containing 19 200 recombinant Escherichia coli BAC clones with 100 Kb average insert size was screened for antibiotic activity. Twenty-seven clones inhibited MRSA, seven of which were found by LC-MS to possess modified chloramphenicol (Cm) derivatives, including three new compounds whose structures were established as 1-acetyl-3-propanoylchloramphenicol, 1-acety1-3-butanoyl-chloramphenicol, and 3-butanoyl-1-propanoylchloramphenicol. Cm was used as the selectable antibiotic for cloning, suggesting that heterologously expressed enzymes resulted in derivatization of Cm into new chemical entities with biological activity. An esterase was found to be responsible for the enzymatic regeneration of Cm, and the gene trfA responsible for plasmid copy induction was found to be responsible for inducing antibacterial activity in some clones. Six additional acylchloramphenicols were synthesized for structure and antibacterial activity relationship studies, with 1-p-nitrobenzoylchloramphenicol the most active against Mycobacterium intracellulare and Mycobacterium tuberculosis, with MICs of 12.5 and 50.0 mu g/mL, respectively.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view