SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Xin Wenli) "

Search: WFRF:(Xin Wenli)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  •  
2.
  • Cao, Xin, et al. (author)
  • A New Method for Simplifying Complex DC Systems and Obtaining the Controller Droop Coefficients
  • 2022
  • In: IEEE Transactions on Power Systems. - : Institute of Electrical and Electronics Engineers (IEEE). - 0885-8950 .- 1558-0679. ; 37:2, s. 996-1006
  • Journal article (peer-reviewed)abstract
    • DC grid has become an important application in power transmission. However, the exist works only have the method to obtain the droop coefficient in a radial topology. Also, this droop coefficient is for V-I droop control. There is no such like method to obtain the droop coefficient for the P-V droop control. This paper proposed a new method for a complex dc grid to obtain the droop coefficients. Firstly, based on the converter control strategies, the types of converter were classified. It will help to find out which kinds of converter can be participated into the dc-side voltage control. Secondly, a virtual node was defined, and the matrix of the dc grid was reshaped to fit the new added virtual node by using the proposed simplification method. An example was shown how this method worked. After that a new method of calculating the P-V droop coefficient was proposed. Finally, a simulation model was investigated to verify if the proposed method can operate in a real system. The results showed that the simplification method can ensure the mathematical relationships of the dc system. And simulations show good performances of the droop coefficient calculation method.
  •  
3.
  • Feng, Zhaoxuan, et al. (author)
  • Nano graphene oxide creates a fully biobased 3D-printed membrane with high-flux and anti-fouling oil/water separation performance
  • 2024
  • In: Chemical Engineering Journal. - : Elsevier B.V.. - 1385-8947 .- 1873-3212. ; 485
  • Journal article (peer-reviewed)abstract
    • Facile fabrication of green and renewable bio-based membranes with good anti-fouling and oil/water separation performance is of great importance to solve the oil spills and industrial oily wastewater threatening the ecological environment. Here, a fully biobased oil/water separation membrane with an ordered porous structure was 3D printed ultraviolet-assisted direct ink writing. The components of the bio-ink were obtained by methacrylation of chitosan (CS) and gelatin (GEL) to synthesize methacrylated chitosan (CSMA) and methacrylated gelatin (GELMA), while the nanographene oxide (nGO) was derived from CS through a simple microwave-assisted hydrothermal carbonization followed by oxidation step. The addition of nGO boosted the printability of the bio-ink, and the anti-fouling property and water permeation flux of the printed membranes. As a result, the membrane M−CSMA/GELMA/nGO-0.7 with the optimal performance possessed a low water contact angle in air of 0°, and high underwater oil contact angle of 161.5°, demonstrating a combination of superhydrophilic and underwater superoleophobic properties. M−CSMA/GELMA/nGO-0.7 has good corrosion resistance and long service life as evidenced from the separation efficiency of n-heptane/water, which kept above 99.5 % and a high water permeation flux above 38,300 L m−2h−1 after 20 cyclic tests in the harsh aquatic conditions containing 1 M NaCl, 1 M HCl, or 1 M NaOH, respectively. This shows promising potential for real-life applications.
  •  
4.
  • Liao, Hong, et al. (author)
  • Genome-wide identification of resistance genes and response mechanism analysis of key gene knockout strain to catechol in Saccharomyces cerevisiae
  • 2024
  • In: FRONTIERS IN MICROBIOLOGY. - 1664-302X. ; 15
  • Journal article (peer-reviewed)abstract
    • Engineering Saccharomyces cerevisiae for biodegradation and transformation of industrial toxic substances such as catechol (CA) has received widespread attention, but the low tolerance of S. cerevisiae to CA has limited its development. The exploration and modification of genes or pathways related to CA tolerance in S. cerevisiae is an effective way to further improve the utilization efficiency of CA. This study identified 36 genes associated with CA tolerance in S. cerevisiae through genome-wide identification and bioinformatics analysis and the ERG6 knockout strain (ERG6 Delta) is the most sensitive to CA. Based on the omics analysis of ERG6 Delta under CA stress, it was found that ERG6 knockout affects pathways such as intrinsic component of membrane and pentose phosphate pathway. In addition, the study revealed that 29 genes related to the cell wall-membrane system were up-regulated by more than twice, NADPH and NADP(+) were increased by 2.48 and 4.41 times respectively, and spermidine and spermine were increased by 2.85 and 2.14 times, respectively, in ERG6 Delta. Overall, the response of cell wall-membrane system, the accumulation of spermidine and NADPH, as well as the increased levels of metabolites in pentose phosphate pathway are important findings in improving the CA resistance. This study provides a theoretical basis for improving the tolerance of strains to CA and reducing the damage caused by CA to the ecological environment and human health.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view