SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Xu Johanna 1989) "

Sökning: WFRF:(Xu Johanna 1989)

  • Resultat 1-10 av 35
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Lozano, Rafael, et al. (författare)
  • Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017
  • 2018
  • Ingår i: The Lancet. - : Elsevier. - 1474-547X .- 0140-6736. ; 392:10159, s. 2091-2138
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of “leaving no one behind”, it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990–2017, projected indicators to 2030, and analysed global attainment. Methods: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0–100, with 0 as the 2·5th percentile and 100 as the 97·5th percentile of 1000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualised rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualised rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualised rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator. Findings: The global median health-related SDG index in 2017 was 59·4 (IQR 35·4–67·3), ranging from a low of 11·6 (95% uncertainty interval 9·6–14·0) to a high of 84·9 (83·1–86·7). SDG index values in countries assessed at the subnational level varied substantially, particularly in China and India, although scores in Japan and the UK were more homogeneous. Indicators also varied by SDI quintile and sex, with males having worse outcomes than females for non-communicable disease (NCD) mortality, alcohol use, and smoking, among others. Most countries were projected to have a higher health-related SDG index in 2030 than in 2017, while country-level probabilities of attainment by 2030 varied widely by indicator. Under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria indicators had the most countries with at least 95% probability of target attainment. Other indicators, including NCD mortality and suicide mortality, had no countries projected to meet corresponding SDG targets on the basis of projected mean values for 2030 but showed some probability of attainment by 2030. For some indicators, including child malnutrition, several infectious diseases, and most violence measures, the annualised rates of change required to meet SDG targets far exceeded the pace of progress achieved by any country in the recent past. We found that applying the mean global annualised rate of change to indicators without defined targets would equate to about 19% and 22% reductions in global smoking and alcohol consumption, respectively; a 47% decline in adolescent birth rates; and a more than 85% increase in health worker density per 1000 population by 2030. Interpretation: The GBD study offers a unique, robust platform for monitoring the health-related SDGs across demographic and geographic dimensions. Our findings underscore the importance of increased collection and analysis of disaggregated data and highlight where more deliberate design or targeting of interventions could accelerate progress in attaining the SDGs. Current projections show that many health-related SDG indicators, NCDs, NCD-related risks, and violence-related indicators will require a concerted shift away from what might have driven past gains—curative interventions in the case of NCDs—towards multisectoral, prevention-oriented policy action and investments to achieve SDG aims. Notably, several targets, if they are to be met by 2030, demand a pace of progress that no country has achieved in the recent past. The future is fundamentally uncertain, and no model can fully predict what breakthroughs or events might alter the course of the SDGs. What is clear is that our actions—or inaction—today will ultimately dictate how close the world, collectively, can get to leaving no one behind by 2030.
  •  
2.
  • Asp, Leif, 1966, et al. (författare)
  • A structural battery and its multifunctional performance
  • 2021
  • Ingår i: Advanced Energy and Sustainability Research. - : Wiley. - 2699-9412. ; 2:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Engineering materials that can store electrical energy in structural load paths can revolutionize lightweight design across transport modes. Stiff and strong batteries that use solid-state electrolytes and resilient electrodes and separators are generally lacking. Herein, a structural battery composite with unprecedented multifunctional performance is demonstrated, featuring an energy density of 24 Wh kg-1 and an elastic modulus of 25 GPa and tensile strength exceeding 300 MPa. The structural battery is made from multifunctional constituents, where reinforcing carbon fibers (CFs) act as electrode and current collector. A structural electrolyte is used for load transfer and ion transport and a glass fiber fabric separates the CF electrode from an aluminum foil-supported lithium–iron–phosphate positive electrode. Equipped with these materials, lighter electrical cars, aircraft, and consumer goods can be pursued.
  •  
3.
  • Asp, Leif, 1966, et al. (författare)
  • Structural Battery Composites: A Review, Functional Composites and Structures
  • 2019
  • Ingår i: Functional Composites and Structures. - : IOP Publishing. - 2631-6331. ; 1
  • Forskningsöversikt (refereegranskat)abstract
    • This paper presents a comprehensive review of the state-of-the-art in structural battery composites research. Structural battery composites are a class of structural power composites aimed to provide mass-less energy storage for electrically powered structural systems. Structural battery composites are made from carbon fibres in a structural electrolyte matrix material. Neat carbon fibres are used as a structural negative electrode, exploiting their high mechanical properties, excellent lithium insertion capacity and high electrical conductivity. Lithium iron phosphate coated carbon fibres are used as the structural positive electrode. Here, the lithium iron phosphate is the electrochemically active substance and the fibres carry mechanical loads and conduct electrons. The surrounding structural electrolyte is lithium ion conductive and transfers mechanical loads between fibres. With these constituents, structural battery half-cells and full-cells are realised with a variety in device architecture. The paper also presents an overview of material modelling and characterisation performed to date. Particular reference is given to work performed in national and European research projects under the leadership of the authors, who are able to provide a unique insight into this emerging and exciting field of research.
  •  
4.
  • Carlstedt, David, 1984, et al. (författare)
  • Electro-chemo-mechanically coupled computational modelling of structural batteries
  • 2020
  • Ingår i: Multifunctional Materials. - : IOP Publishing. - 2399-7532. ; 3:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Structural batteries are multifunctional composites that combine load-bearing capacity with electro-chemical energy storage capability. The laminated architecture is considered in this paper, whereby restriction is made to a so called half-cell in order to focus on the main characteristics and provide a computational tool for future parameter studies. A thermodynamically consistent modelling approach is exploited for the relevant electro-chemo-mechanical system. We consider effects of lithium insertion in the carbon fibres, leading to insertion strains, while assuming transverse isotropy. Further, stress-assisted ionic transport is accounted for in addition to standard diffusion and migration. The relevant space-variational problems that result from time discretisation are established and evaluated in some detail. The proposed model framework is applied to a generic/idealized material representation to demonstrate its functionality and the importance of accounting for the electro-chemo-mechanical coupling effects. As a proof of concept, the numerical studies reveal that it is vital to account for two-way coupling in order to predict the multifunctional (i.e. combined electro-chemo-mechanical) performance of structural batteries.
  •  
5.
  • Carlstedt, David, 1984, et al. (författare)
  • Experimental and computational characterization of carbon fibre based structural battery electrode laminae
  • 2022
  • Ingår i: Composites Science and Technology. - : Elsevier BV. - 0266-3538. ; 220
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, electrode laminae consisting of carbon fibres embedded in structural battery electrolyte (CF-SBE electrodes) are characterized with respect to their multifunctional (i.e. combined electrochemical and mechanical) performance utilizing experimental and numerical techniques. The studied material is made from commercially available polyacrylonitrile (PAN)-based carbon fibres and a porous SBE matrix/electrolyte, which is composed of two continuous phases: a solid polymer skeleton (vinyl ester-based) and a Li-salt containing liquid electrolyte. Experimental and numerical studies are performed on CF-SBE electrode half-cells, whereby a coupled electro-chemo-mechanical finite element model is exploited. Results show that, similar to traditional batteries, electrode thickness, transport properties of the electrolyte and applied current significantly affect electrochemical performance. For example, increasing the electrode thickness of the studied CF-SBE electrode from 50 μm to 200 μm results in a reduction in specific capacity of approximately 70/95% for an applied current of 30/120 mA g? 1 of fibres, respectively. Further, Li-insertion induced longitudinal expansion of carbon fibre electrodesare video microscopically recorded during charge/discharge conditions. In liquid electrolyte the total/reversible longitudinal expansion are found to be 0.85/0.8% while for the CF-SBE electrode the reversible expansion is found to be 0.6%. The fibre expansion in the CF-SBE electrode gives rise to residual strains which is demonstrated numerically. We expect that the utilized computational framework and experimental data open a route to develop high-performing, both mechanically and electrochemically, carbon fibre based battery electrode laminae for future lightweight structural components with energy storage ability.
  •  
6.
  • Carlstedt, David, 1984, et al. (författare)
  • Unit cells for multiphysics modelling of structural battery composites
  • 2019
  • Ingår i: ICCM International Conferences on Composite Materials. ; 2019-August
  • Konferensbidrag (refereegranskat)abstract
    • To predict the multifunctional performance of structural battery composites, multiple physical phenomena need to be studied simultaneously. Hence, multiphysics models are needed to evaluate the complete performance of this composite material. In this study the coupled analysis for multiphysics modelling of structural battery composites is presented and modelling strategies and unit cell designs are discussed with respect to the different physical models. Furthermore, FE-models are setup in the commercial Finite Element (FE) software COMSOL to study if existing physics-based modelling techniques and homogenization schemes for conventional lithium ion batteries can be used to describe the electrochemical behaviour of structural battery composites. To predict the microscopic behaviour, the local variation of the mass and charge concentrations need to be accounted for. Hence, refined models with appropriate boundary conditions are needed to capture the microscopic conditions inside the material. The numerical results demonstrate that conventional physics-based 1D battery models and homogenization schemes based on porous media theory can be used to predict the macroscopic electrical behaviour of the fibrous structural battery. For future work electrochemical experiments on battery cell level are planned to validate the numerical results.
  •  
7.
  • Chaudhary, Richa, 1988, et al. (författare)
  • Structural Positive Electrodes Engineered for Multifunctionality
  • 2024
  • Ingår i: Advanced Science. - 2198-3844 .- 2198-3844. ; In Press
  • Tidskriftsartikel (refereegranskat)abstract
    • Multifunctional structural batteries are of high and emerging interest in a wide variety of high-strength and lightweight applications. Structural batteries typically use pristine carbon fiber as the negative electrode, functionalized carbon fiber as the positive electrode, and a mechanically robust lithium-ion transporting electrolyte. However, electrochemical cycling of carbon fibre-based positive electrodes is still limited to tests in liquid electrolytes, which does not allow for to introduction of multifunctionality in real terms. To overcome these limitations, structural batteries with a structural battery electrolyte (SBE) are developed. This approach offers massless energy storage. The electrodes are manufactured using economically friendly, abundant, cheap, and non-toxic iron-based materials like olivine LiFePO4. Reduced graphene oxide, renowned for its high surface area and electrical conductivity, is incorporated to enhance the ion transport mechanism. Furthermore, a vacuum-infused solid-liquid electrolyte is cured to bolster the mechanical strength of the carbon fibers and provide a medium for lithium-ion migration. Electrophoretic deposition is selected as a green process to manufacture the structural positive electrodes with homogeneous mass loading. A specific capacity of 112 mAh g−1 can be reached at C/20, allowing the smooth transport of Li-ion in the presence of SBE. The modulus of positive electrodes exceeded 80 GPa. Structural battery-positive half-cells are demonstrated across various mass-loadings, enabling them to be tailored for a diverse array of applications in consumer technology, electric vehicles, and aerospace sectors.
  •  
8.
  • Duan, Shanghong, 1992, et al. (författare)
  • BUILDING AND CHARACTERIZATION OF SYMMETRIC STRUCTURAL BATTERY
  • 2022
  • Ingår i: ECCM 2022 - Proceedings of the 20th European Conference on Composite Materials: Composites Meet Sustainability. ; 3, s. 1169-1174
  • Konferensbidrag (refereegranskat)abstract
    • Recently, a structural battery with multifunctional carbon fibre anode has been reported. The energy density of active material is not fully extracted due to the low ionic conductivity inside the battery. To identify the main region that attributes to the low ion transportation, we assemble a symmetric structural battery with one anode layer in the centre sandwiched between two cathode layers. Such a design can also be treated as a combination of two asymmetric batteries with one full thickness cathode layer plus one half thickness anode layer. Thus, the travelled distance of lithium ions is shortened only in the anode part. It is found that the area energy density of the symmetric structural battery is doubled compared to a reference asymmetric battery. Thus, the additional cathode layer activates the double amount of carbon fibres in the anode. A plausible reason is that only the carbon fibres next to the separator is activated in the battery.
  •  
9.
  • Feigin, Valery L, et al. (författare)
  • Global, Regional, and Country-Specific Lifetime Risks of Stroke, 1990 and 2016.
  • 2018
  • Ingår i: The New England journal of medicine. - 1533-4406 .- 0028-4793. ; 379:25, s. 2429-2437
  • Tidskriftsartikel (refereegranskat)abstract
    • The lifetime risk of stroke has been calculated in a limited number of selected populations. We sought to estimate the lifetime risk of stroke at the regional, country, and global level using data from a comprehensive study of the prevalence of major diseases.We used the Global Burden of Disease (GBD) Study 2016 estimates of stroke incidence and the competing risks of death from any cause other than stroke to calculate the cumulative lifetime risks of first stroke, ischemic stroke, or hemorrhagic stroke among adults 25 years of age or older. Estimates of the lifetime risks in the years 1990 and 2016 were compared. Countries were categorized into quintiles of the sociodemographic index (SDI) used in the GBD Study, and the risks were compared across quintiles. Comparisons were made with the use of point estimates and uncertainty intervals representing the 2.5th and 97.5th percentiles around the estimate.The estimated global lifetime risk of stroke from the age of 25 years onward was 24.9% (95% uncertainty interval, 23.5 to 26.2); the risk among men was 24.7% (95% uncertainty interval, 23.3 to 26.0), and the risk among women was 25.1% (95% uncertainty interval, 23.7 to 26.5). The risk of ischemic stroke was 18.3%, and the risk of hemorrhagic stroke was 8.2%. In high-SDI, high-middle-SDI, and low-SDI countries, the estimated lifetime risk of stroke was 23.5%, 31.1% (highest risk), and 13.2% (lowest risk), respectively; the 95% uncertainty intervals did not overlap between these categories. The highest estimated lifetime risks of stroke according to GBD region were in East Asia (38.8%), Central Europe (31.7%), and Eastern Europe (31.6%), and the lowest risk was in eastern sub-Saharan Africa (11.8%). The mean global lifetime risk of stroke increased from 22.8% in 1990 to 24.9% in 2016, a relative increase of 8.9% (95% uncertainty interval, 6.2 to 11.5); the competing risk of death from any cause other than stroke was considered in this calculation.In 2016, the global lifetime risk of stroke from the age of 25 years onward was approximately 25% among both men and women. There was geographic variation in the lifetime risk of stroke, with the highest risks in East Asia, Central Europe, and Eastern Europe. (Funded by the Bill and Melinda Gates Foundation.).
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 35
Typ av publikation
tidskriftsartikel (25)
konferensbidrag (7)
doktorsavhandling (1)
forskningsöversikt (1)
licentiatavhandling (1)
Typ av innehåll
refereegranskat (30)
övrigt vetenskapligt/konstnärligt (5)
Författare/redaktör
Xu, Johanna, 1989 (29)
Asp, Leif, 1966 (23)
Liu, Fang, 1975 (10)
Johansen, Marcus, 19 ... (9)
Carlstedt, David, 19 ... (8)
Sahebkar, Amirhossei ... (6)
visa fler...
Hay, Simon I. (6)
Bensenor, Isabela M. (6)
Feigin, Valery L. (6)
Geleijnse, Johanna M ... (6)
Jonas, Jost B. (6)
Kasaeian, Amir (6)
Khang, Young-Ho (6)
Lotufo, Paulo A. (6)
Malekzadeh, Reza (6)
Mendoza, Walter (6)
Miller, Ted R. (6)
Mokdad, Ali H. (6)
Naghavi, Mohsen (6)
Qorbani, Mostafa (6)
Sartorius, Benn (6)
Sepanlou, Sadaf G. (6)
Uthman, Olalekan A. (6)
Vos, Theo (6)
Werdecker, Andrea (6)
Xu, Gelin (6)
Yonemoto, Naohiro (6)
Murray, Christopher ... (6)
Bennett, Derrick A. (6)
Kim, Daniel (6)
Kosen, Soewarta (6)
Majeed, Azeem (6)
Mensah, George A. (6)
Patton, George C. (6)
Salomon, Joshua A. (6)
Santos, Itamar S. (6)
Tabares-Seisdedos, R ... (6)
Topor-Madry, Roman (6)
Yano, Yuichiro (6)
Mazidi, Mohsen, 1989 (6)
Gupta, Rahul (6)
Venketasubramanian, ... (6)
Rawaf, Salman (6)
Gupta, Rajeev (6)
Miazgowski, Tomasz (6)
Duan, Shanghong, 199 ... (6)
Banach, Maciej (6)
Rahman, Mahfuzar (6)
Fischer, Florian (6)
Castañeda-Orjuela, C ... (6)
visa färre...
Lärosäte
Chalmers tekniska högskola (29)
Luleå tekniska universitet (7)
Karolinska Institutet (6)
Högskolan Dalarna (5)
Umeå universitet (4)
Kungliga Tekniska Högskolan (4)
visa fler...
Uppsala universitet (3)
Lunds universitet (3)
Södertörns högskola (2)
Göteborgs universitet (1)
Stockholms universitet (1)
visa färre...
Språk
Engelska (35)
Forskningsämne (UKÄ/SCB)
Teknik (28)
Naturvetenskap (13)
Medicin och hälsovetenskap (6)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy