SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Xu Yunhua) "

Search: WFRF:(Xu Yunhua)

  • Result 1-10 of 31
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kristanl, Matej, et al. (author)
  • The Seventh Visual Object Tracking VOT2019 Challenge Results
  • 2019
  • In: 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW). - : IEEE COMPUTER SOC. - 9781728150239 ; , s. 2206-2241
  • Conference paper (peer-reviewed)abstract
    • The Visual Object Tracking challenge VOT2019 is the seventh annual tracker benchmarking activity organized by the VOT initiative. Results of 81 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis as well as the standard VOT methodology for long-term tracking analysis. The VOT2019 challenge was composed of five challenges focusing on different tracking domains: (i) VOT-ST2019 challenge focused on short-term tracking in RGB, (ii) VOT-RT2019 challenge focused on "real-time" short-term tracking in RGB, (iii) VOT-LT2019 focused on long-term tracking namely coping with target disappearance and reappearance. Two new challenges have been introduced: (iv) VOT-RGBT2019 challenge focused on short-term tracking in RGB and thermal imagery and (v) VOT-RGBD2019 challenge focused on long-term tracking in RGB and depth imagery. The VOT-ST2019, VOT-RT2019 and VOT-LT2019 datasets were refreshed while new datasets were introduced for VOT-RGBT2019 and VOT-RGBD2019. The VOT toolkit has been updated to support both standard short-term, long-term tracking and tracking with multi-channel imagery. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website(1).
  •  
2.
  • Kristan, Matej, et al. (author)
  • The Sixth Visual Object Tracking VOT2018 Challenge Results
  • 2019
  • In: Computer Vision – ECCV 2018 Workshops. - Cham : Springer Publishing Company. - 9783030110086 - 9783030110093 ; , s. 3-53
  • Conference paper (peer-reviewed)abstract
    • The Visual Object Tracking challenge VOT2018 is the sixth annual tracker benchmarking activity organized by the VOT initiative. Results of over eighty trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in the recent years. The evaluation included the standard VOT and other popular methodologies for short-term tracking analysis and a “real-time” experiment simulating a situation where a tracker processes images as if provided by a continuously running sensor. A long-term tracking subchallenge has been introduced to the set of standard VOT sub-challenges. The new subchallenge focuses on long-term tracking properties, namely coping with target disappearance and reappearance. A new dataset has been compiled and a performance evaluation methodology that focuses on long-term tracking capabilities has been adopted. The VOT toolkit has been updated to support both standard short-term and the new long-term tracking subchallenges. Performance of the tested trackers typically by far exceeds standard baselines. The source code for most of the trackers is publicly available from the VOT page. The dataset, the evaluation kit and the results are publicly available at the challenge website (http://votchallenge.net).
  •  
3.
  • Duan, Lele, et al. (author)
  • Ce-IV- and Light-Driven Water Oxidation by [Ru(terpy)(pic)(3)](2+) Analogues : Catalytic and Mechanistic Studies
  • 2011
  • In: CHEMSUSCHEM. - : Wiley. - 1864-5631. ; 4:2, s. 238-244
  • Journal article (peer-reviewed)abstract
    • A series of mononuclear ruthenium polypyridyl complexes [Ru(Mebimpy)(pic)(3)](PF6)(2) (2; Mebimpy=2,6-bis(1-methylbenzimidazol-2-yl)pyridine; pic=4-picoline), Ru(bimpy)(pic)(3) (3; H(2)bimpy=2,6-bis(benzimidazol-2-yl)pyridine), trans-[Ru(terpy)-(pic)(2)Cl](PF6) (4; terpy=2,2';6',2 ''-terpyridine), and trans-[Ru(terpy)(pic)(2)(OH2)](ClO4)(2) (5) are synthesized and characterized as analogues of the known Ru complex, [Ru(terpy)(pic)(3)](PF6)(2) (1). The effect of the ligands on electronic and catalytic properties is studied and discussed. The negatively charged ligand, bimpy(2-), has a remarkable influence on the electrochemical events due to its strong electron-donating ability. The performance in light- and Ce-IV-driven (Ce-IV=Ce(NH4)(2)(NO3)(6)) water oxidation is successfully demonstrated. We propose that ligand exchange between pic and H2O occurs to form the real catalyst, a Ru-aqua complex. The synthesis and testing of trans[Ru(terpy)(pic)(2)(OH2)](ClO4)(2) (5) confirmed our proposal. In addition, complex 5 possesses the best catalytic activity among these five complexes.
  •  
4.
  • Duan, Lele, et al. (author)
  • Chemical and Photochemical Water Oxidation Catalyzed by Mononuclear Ruthenium Complexes with a Negatively Charged Tridentate Ligand
  • 2010
  • In: Chemistry - A European Journal. - : Wiley. - 0947-6539 .- 1521-3765. ; 16:15, s. 4659-4668
  • Journal article (peer-reviewed)abstract
    • Two mononuclear ruthenium complexes [RuL(pic)(3)] (1) and [RuL(bpy)(pic)] (2) (H2L = 2,6-pyridinedicarboxylic acid, pic=4-picoline, bpy = 2,2'-bipyridine) have been synthesized and fully characterized. Both complexes could promote water oxidation chemically and photochemically. Compared with other known ruthenium-based water oxidation catalysts using [Ce(NH4)(2)(NO3)(6)] (Ce-IV) as the oxidant in solution at pH 1.0, complex 1 is one of the most active catalysts yet reported with an initial rate of 0.23 turnovers(-1). Under acidic conditions, the equatorial 4-picoline in complex 1 dissociates first. In addition, ligand exchange in 1 occurs when the Rum state is reached. Based on the above observations and MS measurements of the intermediates during water oxidation by 1 using Ce-IV as oxidant, [RuL(pic)(2)(H2O)](+) is proposed as the real water oxidation catalyst.
  •  
5.
  •  
6.
  • Duan, Lele, et al. (author)
  • Isolated Seven-Coordinate Ru(IV) Dimer Complex with HOHOH (-) Bridging Ligand as an Intermediate for Catalytic Water Oxidation
  • 2009
  • In: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 0002-7863 .- 1520-5126. ; 131:30, s. 10397-
  • Journal article (peer-reviewed)abstract
    • With the inspiration from an oxygen evolving complex (OEC) in Photosystern II (PSII), a mononuclear Ru(II) complex with a tetradentate ligand containing two carboxylate groups has been synthesized and structurally characterized. This Ru(II) complex showed efficient catalytic properties toward water oxidation by the chemical oxidant cerium(IV) ammonium nitrate. During the process of catalytic water oxidation, Ru(III) and Ru(IV) species have been successfully isolated as intermediates. To our surprise, X-ray crystallography together with HR-MS revealed that the Ru(IV) species is a seven-coordinate Ru(IV) dimer complex containing a [HOHOH](-) bridging ligand. This bridging ligand has a short O center dot center dot center dot O distance and is hydrogen bonded to two water molecules. The discovery of this very uncommon seven-coordinate Ru(IV) dimer together with a hydrogen bonding network may contribute to a deeper understanding of the mechanism for catalytic water oxidation. It will also provide new possibilities for the design of more efficient catalysts for water oxidation, which is the key step for solar energy conversion into hydrogen by tight-driven water splitting, the ultimate challenge in artificial photosynthesis.
  •  
7.
  • Duan, Lele, et al. (author)
  • Visible Light-Driven Water Oxidation by a Molecular Ruthenium Catalyst in Homogeneous System
  • 2010
  • In: Inorganic Chemistry. - : American Chemical Society (ACS). - 0020-1669 .- 1520-510X. ; 49:1, s. 209-215
  • Journal article (peer-reviewed)abstract
    • Discovery of an efficient catalyst bearing low overpotential toward water oxidation is a key step for light-driven water splitting into dioxygen and dihydrogen. A mononuclear ruthenium complex, Ru(II)L(pic)(2) (1) (H2L = 2,2'-bipyridine-6,6'-dicarboxylic acids pic = 4-picoline), was found capable of oxidizing water eletrochemically at a relatively low potential and promoting light-driven water oxidation using a three-component system composed of a photosensitizer, sacrificial electron acceptor, and complex 1. The detailed electrochemical properties of 1 were studied, and the onset potentials of the electrochemically catalytic curves in pH 7.0 and pH 1.0 solutions are 1.0 and 1.5 V, respectively. The low catalytic potential of 1 under neutral conditions allows the use of [Ru(bpy)(3)](2+) and even [Ru(dmbpy)(3)](2+) as a photosensitizer for photochemical water oxidation. Two different sacrificial electron acceptors, [Co(NH3)(5)Cl]Cl-2 and Na2S2O8, were used to generate the oxidized state of ruthenium tris(2,2'-bipyridyl) photosensitizers. In addition, a two-hour photolysis of I in a pH TO phosphate buffer did not lead to obvious degradation, indicating the good photostability of our catalyst. However, under conditions of light-driven water oxidation, the catalyst deactivates quickly. In both solution and the solid state under aerobic conditions, complex 1 gradually decomposed via oxidative degradation of its ligands, and two of the decomposed products, sp(3) C-H bond oxidized Ru complexes, were identified. The capability of oxidizing the sp(3) C-H bond implies the presence of a highly oxidizing Ru species, which might also cause the final degradation of the catalyst.
  •  
8.
  • Duan, Lele, et al. (author)
  • Visible light-driven water oxidation-from molecular catalysts to photoelectrochemical cells
  • 2011
  • In: Energy & Environmental Science. - : Royal Society of Chemistry (RSC). - 1754-5692 .- 1754-5706. ; 4:9, s. 3296-3313
  • Journal article (peer-reviewed)abstract
    • This perspective article reports the most significant advances in the field of water oxidation-from molecular water oxidation catalysts (WOCs) to photoelectrochemical cells. Different series of catalysts that can be applied in visible light-driven water oxidation catalysis are discussed in details and several key aspects of their catalytic mechanisms are introduced. In order to construct a water oxidation electrode from molecular catalysts, proper immobilization methods have to be employed. Herein, we present one section about how to attach catalysts onto an electrode/material surface. Finally, the state of the art photoelectrochemical cells that achieve visible light-driven water splitting are described.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 31
Type of publication
journal article (25)
other publication (3)
conference paper (2)
doctoral thesis (1)
Type of content
peer-reviewed (27)
other academic/artistic (4)
Author/Editor
Xu, Yunhua (28)
Sun, Licheng (26)
Duan, Lele (13)
Åkermark, Björn (10)
Tong, Lianpeng (8)
Sundström, Villy (5)
show more...
Styring, Stenbjörn (5)
Polivka, Tomas (5)
Fischer, Andreas (4)
Lomoth, Reiner (4)
Magnuson, Ann (4)
Hammarström, Leif (3)
Hagfeldt, Anders (3)
Zhang, Rong (3)
Gorlov, Mikhail (3)
Pan, Jie (3)
Pascher, Torbjörn (2)
Johnston, Eric V. (2)
Zou, Xiaodong (2)
Kloo, Lars (2)
Wang, Dong (2)
Huang, Ping (2)
Li, Jing (2)
Boschloo, Gerrit (2)
van de Weijer, Joost (2)
Lee, Bao-Lin (2)
Åkermark, Torbjörn (2)
Li, Bo (2)
Bai, Shuai (2)
Benkö, Gabor (2)
Felsberg, Michael, 1 ... (2)
Feyziyev, Yashar (2)
Bhat, Goutam (2)
Khan, Fahad Shahbaz, ... (2)
Pan, Jingxi (2)
Zhao, Fei (2)
Matas, Jiri (2)
Privalov, Timofei (2)
Yang, Ming-Hsuan (2)
Eldesokey, Abdelrahm ... (2)
Leonardis, Ales (2)
Fernandez, Gustavo (2)
Pflugfelder, Roman (2)
Lukezic, Alan (2)
Wang, Jinqiao (2)
Bertinetto, Luca (2)
Nonomura, Kazuteru (2)
Tran, Lien-Hoa (2)
Zajc, Luka Čehovin (2)
Feng, Wei (2)
show less...
University
Royal Institute of Technology (17)
Stockholm University (16)
Uppsala University (6)
Linköping University (2)
University of Gothenburg (1)
RISE (1)
Language
English (24)
Undefined language (7)
Research subject (UKÄ/SCB)
Natural sciences (20)
Engineering and Technology (2)
Medical and Health Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view