SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Yadykin Dmytro 1977) "

Search: WFRF:(Yadykin Dmytro 1977)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Huynh, P., et al. (author)
  • ICRF HEATING AND TURBULENT TRANSPORT MODELLING OF THE WEST L-MODE PLASMA USING ETS: INTERPRETATIVE AND PREDICTIVE CODE VALIDATION
  • 2022
  • In: 48th EPS Conference on Plasma Physics, EPS 2022. - : European Physical Society (EPS).
  • Conference paper (peer-reviewed)abstract
    • The European Transport Simulator (“ETS”) [1] is a suite of codes designed to simulate tokamak plasma discharges. Not only it highlights the evolution of particle density and energy due to transport effects accounting for particle, heat and current sources, but it equally provides insight into fast ion dynamics resulting from ICRH (and - if present - beams), and the impact these high-energy populations have on the plasma core [2]. This tool allows to help understand the plasma dynamics in WEST and is being used for optimizing the plasma discharge. In particular, attention is being devoted to identify means to avoid a radiative collapse by ensuring an efficient electron RF induced heating and to help finding favourable conditions to enable the L-H transition. The first step was to verify and validate the simulator in interpretative and predictive mode for some relevant WEST L-mode plasmas. Cyrano [5] and StixRedist [6] are used as ICRH modules [2, 7, 8], while transport is assumed to be due to turbulence and is described exploiting the TGLF module [9, 10]. Collisional electron power computed with the ICRF modules was compared with the experimental one obtained by using the Break In Slope method. Scans in minority density and ICRF power were performed in interpretative mode in order to determine the electron/ion heating ratio, revealing dominant electron heating and highlighting that the neutron rate is a sensitive function of the power absorbed by the deuterons. Seeking for the highest possible compatibility between the various available measurements (electron temperature profiles, stored energy and neutron rate) while staying within realistic error bars, predictive modelling which describes the evolution of particle density and temperatures allows to estimate the ion temperature profiles (not yet available on WEST) and to establish a firm link between the WEST experimental data (e.g. energy & neutron rate) on the one hand and the thermal and fast particle profiles resulting from simulation on the other.
  •  
2.
  • Kim, Hyun-Tae, et al. (author)
  • Validation of D-T fusion power prediction capability against 2021 JET D-T experiments
  • 2023
  • In: Nuclear Fusion. - 0029-5515 .- 1741-4326. ; 63:11
  • Journal article (peer-reviewed)abstract
    • JET experiments using the fuel mixture envisaged for fusion power plants, deuterium and tritium (D-T), provide a unique opportunity to validate existing D-T fusion power prediction capabilities in support of future device design and operation preparation. The 2021 JET D-T experimental campaign has achieved D-T fusion powers sustained over 5 s in ITER-relevant conditions i.e. operation with the baseline or hybrid scenario in the full metallic wall. In preparation of the 2021 JET D-T experimental campaign, extensive D-T predictive modelling was carried out with several assumptions based on D discharges. To improve the validity of ITER D-T predictive modelling in the future, it is important to use the input data measured from 2021 JET D-T discharges in the present core predictive modelling, and to specify the accuracy of the D-T fusion power prediction in comparison with the experiments. This paper reports on the validation of the core integrated modelling with TRANSP, JINTRAC, and ETS coupled with a quasilinear turbulent transport model (Trapped Gyro Landau Fluid or QualLiKiz) against the measured data in 2021 JET D-T discharges. Detailed simulation settings and the heating and transport models used are described. The D-T fusion power calculated with the interpretive TRANSP runs for 38 D-T discharges (12 baseline and 26 hybrid discharges) reproduced the measured values within 20 % . This indicates the additional uncertainties, that could result from the measurement error bars in kinetic profiles, impurity contents and neutron rates, and also from the beam-thermal fusion reaction modelling, are less than 20 % in total. The good statistical agreement confirms that we have the capability to accurately calculate the D-T fusion power if correct kinetic profiles are predicted, and indicates that any larger deviation of the D-T fusion power prediction from the measured fusion power could be attributed to the deviation of the predicted kinetic profiles from the measured kinetic profiles in these plasma scenarios. Without any posterior adjustment of the simulation settings, the ratio of predicted D-T fusion power to the measured fusion power was found as 65%-96% for the D-T baseline and 81%-97% for D-T hybrid discharge. Possible reasons for the lower D-T prediction are discussed and future works to improve the fusion power prediction capability are suggested. The D-T predictive modelling results have also been compared to the predictive modelling of the counterpart D discharges, where the key engineering parameters are similar. Features in the predicted kinetic profiles of D-T discharges such as underprediction of ne are also found in the prediction results of the counterpart D discharges, and it leads to similar levels of the normalized neutron rate prediction between the modelling results of D-T and the counterpart D discharges. This implies that the credibility of D-T fusion power prediction could be a priori estimated by the prediction quality of the preparatory D discharges, which will be attempted before actual D-T experiments.
  •  
3.
  • Murari, A., et al. (author)
  • A control oriented strategy of disruption prediction to avoid the configuration collapse of tokamak reactors
  • 2024
  • In: Nature Communications. - 2041-1723 .- 2041-1723. ; 15:1
  • Journal article (peer-reviewed)abstract
    • The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor. In this work we report how, deploying innovative analysis methods on thousands of JET experiments covering the isotopic compositions from hydrogen to full tritium and including the major D-T campaign, the nature of the various forms of collapse is investigated in all phases of the discharges. An original approach to proximity detection has been developed, which allows determining both the probability of and the time interval remaining before an incoming disruption, with adaptive, from scratch, real time compatible techniques. The results indicate that physics based prediction and control tools can be developed, to deploy realistic strategies of disruption avoidance and prevention, meeting the requirements of the next generation of devices.
  •  
4.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view