SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Youakim K.) "

Search: WFRF:(Youakim K.)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Lamb, M., et al. (author)
  • Using the multi-object adaptive optics demonstrator RAVEN to observe metal-poor stars in and towards the Galactic Centre
  • 2017
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 465:3, s. 3536-3557
  • Journal article (peer-reviewed)abstract
    • The chemical abundances for five metal-poor stars in and towards the Galactic bulge have been determined from the H-band infrared spectroscopy taken with the RAVEN multi-object adaptive optics science demonstrator and the Infrared Camera and Spectrograph at the Subaru 8.2-m telescope. Three of these stars are in the Galactic bulge and have metallicities between -2.1<[Fe/H] < -1.5, and high [α/Fe]~+0.3, typical of Galactic disc and bulge stars in this metallicity range; [Al/Fe] and [N/Fe] are also high, whereas [C/Fe] < +0.3. An examination of their orbits suggests that two of these stars may be confined to the Galactic bulge and one is a halo trespasser, though proper motion values used to calculate orbits are quite uncertain. An additional two stars in the globular cluster M22 show [Fe/H] values consistent to within 1σ, although one of these two stars has [Fe/H] = -2.01 ± 0.09, which is on the low end for this cluster. The [α/Fe] and [Ni/Fe] values differ by 2σ, with the most metal-poor star showing significantly higher values for these elements. M22 is known to show element abundance variations, consistent with a multipopulation scenario though our results cannot discriminate this clearly given our abundance uncertainties. This is the first science demonstration of multiobject adaptive optics with high-resolution infrared spectroscopy, and we also discuss the feasibility of this technique for use in the upcoming era of 30-m class telescope facilities.
  •  
2.
  • Arentsen, A., et al. (author)
  • The Pristine Inner Galaxy Survey (PIGS) I : tracing the kinematics of metal-poor stars in the Galactic bulge
  • 2020
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966 .- 1745-3925 .- 1745-3933. ; 491:1, s. L11-L16
  • Journal article (peer-reviewed)abstract
    • Our Galaxy is known to contain a central boxy/peanut-shaped bulge, yet the importance of a classical, pressure-supported component within the central part of the Milky Way is still being debated. It should be most visible at low metallicity, a regime that has not yet been studied in detail. Using metallicity-sensitive narrow-band photometry, the Pristine Inner Galaxy Survey (PIGS) has collected a large sample of metal-poor ([Fe/H] < -1.0) stars in the inner Galaxy to address this open question. We use PIGS to trace the metal-poor inner Galaxy kinematics as function of metallicity for the first time. We find that the rotational signal decreases with decreasing [Fe/H], until it becomes negligible for the most metal-poor stars. Additionally, the velocity dispersion increases with decreasing metallicity for -3.0 < [Fe/II] < -0.5, with a gradient of -44 +/- 41un s(-1)dex(-1). These observations may signal a transition between Galactic components of different metallicities and kinematics, a different mapping on to the boxy/peanut-shaped bulge for former disc stars of different metallicities and/or the secular dynamical and gravitational influence of the bar on the pressure-supported component. Our results provide strong constraints on models that attempt to explain the properties of the inner Galaxy.
  •  
3.
  • Mallinson, J. W. E., et al. (author)
  • Titanium abundances in late-type stars : II. Grid of departure coefficients and application to a sample of 70 000 stars
  • 2024
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 687
  • Journal article (peer-reviewed)abstract
    • Context. Rapidly growing datasets from stellar spectroscopic surveys are providing unprecedented opportunities to analyse the chemical evolution history of our Galaxy. However, spectral analysis requires accurate modelling of synthetic stellar spectra for late-type stars, for which the assumption of local thermodynamic equilibrium (LTE) has been shown to be insufficient in many cases. Errors associated with LTE can be particularly large for Ti I, which is susceptible to over-ionisation, particularly in metal-poor stars.Aims. The aims of this work are to study and quantify the 1D non-LTE effects on titanium abundances across the Hertzsprung-Russell diagram for a large sample of stars.Methods. A large grid of departure coefficients, βν, were computed on standard MARCS model atmospheres. The grid extends from 3000 K to 8000 K in Teff, −0.5 dex to +5.5 dex in log g, and −5.0 to +1.0 in [Fe/H], with non-LTE effects in this grid reaching up to 0.4 dex. This was used to compute abundance corrections that were subsequently applied to the LTE abundances of over 70 000 stars selected from the GALAH survey in addition to a smaller sample of literature Keck data for metal-poor dwarfs.Results. The non-LTE effects grow towards lower [Fe/H], lower log g, and higher Teff, with a minimum and maximum ΔA(Ti)Ti I of 0.02 and 0.19 in the GALAH sample. For metal-poor giants, the non-LTE modelling reduces the average ionisation imbalance (ΔI−II) from −0.11 dex to −0.01 dex at [Fe/H] = −1.7, and the enhancement in titanium abundances from Ti I lines results in a [Ti/Fe] versus [Fe/H] trend that more closely resembles the behaviour of Ti II at low metallicities. At higher metallicities, the results are limited by the precision of the GALAH DR3 LTE abundances and the effects are within the errors. For the most metal-poor dwarfs from the Keck sample, the average ionisation imbalance increases from −0.1 dex to +0.2 dex, a shortcoming that is consistent with previous 1D non-LTE studies and which we speculate could be related to 3D effects.Conclusions. Non-LTE effects on titanium abundances are significant. Neglecting them may alter our understanding of Galactic chemical evolution. We have made our grid of departure coefficients publicly available, with the caveat that the Ti abundances of metal-poor dwarfs need further study in 3D non-LTE.
  •  
4.
  • Carrillo, I., et al. (author)
  • Kinematics with GAIA DR2 : The force of a dwarf
  • 2019
  • In: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 1365-2966 .- 0035-8711. ; 490:1, s. 797-812
  • Journal article (peer-reviewed)abstract
    • We use Gaia DR2 astrometric and line-of-sight velocity information combined with two sets of distances obtained with a Bayesian inference method to study the 3D velocity distribution in the Milky Way disc. We search for variations in all Galactocentric cylindrical velocity components (Vφ, VR, and Vz) with Galactic radius, azimuth, and distance from the disc mid-plane. We confirm recent work showing that bulk vertical motions in the R–z plane are consistent with a combination of breathing and bending modes. In the x–y plane, we show that, although the amplitudes change, the structure produced by these modes is mostly invariant as a function of distance from the plane. Comparing to two different Galactic disc models, we demonstrate that the observed patterns can drastically change in short time intervals, showing the complexity of understanding the origin of vertical perturbations. A strong radial VR gradient was identified in the inner disc, transitioning smoothly from 16 km s−1 kpc−1 at an azimuth of 30◦ < φ < 45◦ ahead of the Sun-Galactic centre line to −16 km s−1 kpc−1 at an azimuth of −45◦ < φ < −30◦ lagging the solar azimuth. We use a simulation with no significant recent mergers to show that exactly the opposite trend is expected from a barred potential, but overestimated distances can flip this trend to match the data. Alternatively, using an N-body simulation of the Sagittarius dwarf–Milky Way interaction, we demonstrate that a major recent perturbation is necessary to reproduce the observations. Such an impact may have strongly perturbed the existing bar or even triggered its formation in the last 1–2 Gyr.
  •  
5.
  • Mallinson, Jack William Edmund, 1995-, et al. (author)
  • Titanium abundances in late-type stars : I. 1D non-local thermodynamic equilibrium modelling in benchmark dwarfs and giants
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 668
  • Journal article (peer-reviewed)abstract
    • Context. The titanium abundances of late-type stars are important tracers of Galactic formation history. However, abundances inferred from TiI and TiII lines can be in stark disagreement in very metal-poor giants. Departures from local thermodynamic equilibrium (LTE) have a large impact on the minority neutral species and thus influence the ionisation imbalance, but satisfactory non-LTE modelling for both dwarfs and giants has not been achieved in the literature. Aims. The reliability of titanium abundances is reassessed in benchmark dwarfs and giants using a new non-LTE model 1D model atmospheres.Methods. A comprehensive model atom was compiled with a more extended level structure and newly published data for inelastic collisions between TiI and neutral hydrogen. Results. In 1D LTE, the TiI and TiII lines agree to within 0.06 dex for the Sun, Arcturus, and the very metal-poor stars HD 84937 and HD 140283. For the very metal-poor giant HD 122563, the TiI lines give an abundance that is 0.47 dex lower than that from TiII . The 1D non-LTE corrections can reach +0.4 dex for individual TiI lines and +0.1 dex for individual TiII lines, and they reduce the overall ionisation imbalance to -0.17 dex for HD 122563. However, the corrections also increase the imbalance for the very metal-poor dwarf and sub-giant to around 0.2 dex. Conclusions. Using 1D non-LTE reduces the ionisation imbalance in very metal-poor giants but breaks the balance of other very metal-poor stars, consistent with conclusions drawn in the literature. To make further progress, consistent 3D non-LTE models are needed.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view