SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Youakim Kris) "

Search: WFRF:(Youakim Kris)

  • Result 1-6 of 6
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Guiglion, G., et al. (author)
  • Beyond Gaia DR3 : Tracing the [α/M] - [M/H] bimodality from the inner to the outer Milky Way disc with Gaia-RVS and convolutional neural networks
  • 2024
  • In: Astronomy and Astrophysics. - 0004-6361 .- 1432-0746. ; 682
  • Journal article (peer-reviewed)abstract
    • Context. In June 2022, Gaia DR3 provided the astronomy community with about one million spectra from the Radial Velocity Spectrometer (RVS) covering the CaII triplet region. In the next Gaia data releases, we anticipate the number of RVS spectra to successively increase from several 10 million spectra to eventually more than 200 million spectra. Thus, stellar spectra are projected to be produced on an ‘industrial scale’, with numbers well above those for current and anticipated ground-based surveys. However, one-third of the published spectra have 15 ≤ S /N ≤ 25 per pixel such that they pose problems for classical spectral analysis pipelines, and therefore, alternative ways to tap into these large datasets need to be devised.Aims. We aim to leverage the versatility and capabilities of machine learning techniques for supercharged stellar parametrisation by combining Gaia-RVS spectra with the full set of Gaia products and high-resolution, high-quality ground-based spectroscopic reference datasets.Methods. We developed a hybrid convolutional neural network (CNN) that combines the Gaia DR3 RVS spectra, photometry (G, G_BP, G_RP), parallaxes, and XP coefficients to derive atmospheric parameters (Teff, log(g) as well as overall [M/H]) and chemical abundances ([Fe/H] and [α/M]). We trained the CNN with a high-quality training sample based on APOGEE DR17 labels.Results. With this CNN, we derived homogeneous atmospheric parameters and abundances for 886 080 RVS stars that show remarkable precision and accuracy compared to external datasets (such as GALAH and asteroseismology). The CNN is robust against noise in the RVS data, and we derive very precise labels down to S/N =15. We managed to characterise the [α/M] - [M/H] bimodality from the inner regions to the outer parts of the Milky Way, which has never been done using RVS spectra or similar datasets.Conclusions. This work is the first to combine machine learning with such diverse datasets and paves the way for large-scale machine learning analysis of Gaia-RVS spectra from future data releases. Large, high-quality datasets can be optimally combined thanks to the CNN, thereby realising the full power of spectroscopy, astrometry, and photometry.
  •  
2.
  • Kielty, Collin L., et al. (author)
  • The Pristine survey - XII. Gemini-GRACES chemo-dynamical study of newly discovered extremely metal-poor stars in the Galaxy
  • 2021
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 506:1, s. 1438-1461
  • Journal article (peer-reviewed)abstract
    • High-resolution optical spectra of 30 metal-poor stars selected from the Pristine survey are presented, based on observations taken with the Gemini Observatory GRACES spectrograph. Stellar parameters Teff and log g are determined using a Gaia DR2 colour–temperature calibration and surface gravity from the Stefan–Boltzmann equation. GRACES spectra are used to determine chemical abundances (or upper limits) for 20 elements (Li, O, Na, Mg, K, Ca, Ti, Sc, Cr, Mn, Fe, Ni, Cu, Zn, Y, Zr, Ba, La, Nd, Eu). These stars are confirmed to be metal-poor ([Fe/H] < −2.5), with higher precision than from earlier medium-resolution analyses. The chemistry for most targets is similar to other extremely metal-poor stars in the Galactic halo. Three stars near [Fe/H] = −3.0 have unusually low Ca and high Mg, suggestive of contributions from few SN II where alpha-element formation through hydrostatic nucleosynthesis was more efficient. Three new carbon-enhanced metal-poor (CEMP) stars are also identified (two CEMP-s and one potential CEMP-no star) when our chemical abundances are combined with carbon from previous medium-resolution analyses. The GRACES spectra also provide precision radial velocities (σRV ≤ 0.2 km s−1) for dynamical orbit calculations with the Gaia DR2 proper motions. Most of our targets are dynamically associated with the Galactic halo; however, five stars with [Fe/H] < −3 have planar-like orbits, including one retrograde star. Another five stars are dynamically consistent with the Gaia-Sequoia accretion event; three have typical halo [α/Fe] ratios for their metallicities, whereas two are [Mg/Fe]-deficient, and one is a new CEMP-s candidate. These results are discussed in terms of the formation and early chemical evolution of the Galaxy.
  •  
3.
  • Mallinson, Jack William Edmund, 1995-, et al. (author)
  • Titanium abundances in late-type stars : I. 1D non-local thermodynamic equilibrium modelling in benchmark dwarfs and giants
  • 2022
  • In: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 668
  • Journal article (peer-reviewed)abstract
    • Context. The titanium abundances of late-type stars are important tracers of Galactic formation history. However, abundances inferred from TiI and TiII lines can be in stark disagreement in very metal-poor giants. Departures from local thermodynamic equilibrium (LTE) have a large impact on the minority neutral species and thus influence the ionisation imbalance, but satisfactory non-LTE modelling for both dwarfs and giants has not been achieved in the literature. Aims. The reliability of titanium abundances is reassessed in benchmark dwarfs and giants using a new non-LTE model 1D model atmospheres.Methods. A comprehensive model atom was compiled with a more extended level structure and newly published data for inelastic collisions between TiI and neutral hydrogen. Results. In 1D LTE, the TiI and TiII lines agree to within 0.06 dex for the Sun, Arcturus, and the very metal-poor stars HD 84937 and HD 140283. For the very metal-poor giant HD 122563, the TiI lines give an abundance that is 0.47 dex lower than that from TiII . The 1D non-LTE corrections can reach +0.4 dex for individual TiI lines and +0.1 dex for individual TiII lines, and they reduce the overall ionisation imbalance to -0.17 dex for HD 122563. However, the corrections also increase the imbalance for the very metal-poor dwarf and sub-giant to around 0.2 dex. Conclusions. Using 1D non-LTE reduces the ionisation imbalance in very metal-poor giants but breaks the balance of other very metal-poor stars, consistent with conclusions drawn in the literature. To make further progress, consistent 3D non-LTE models are needed.
  •  
4.
  • Venn, Kim A., et al. (author)
  • The Pristine survey – IX. CFHT ESPaDOnS spectroscopic analysis of 115 bright metal-poor candidate stars
  • 2020
  • In: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 492:3, s. 3241-3262
  • Journal article (peer-reviewed)abstract
    • A chemo-dynamical analysis of 115 metal-poor candidate stars selected from the narrow band Pristine photometric survey is presented based on CFHT high-resolution ESPaDOnS spectroscopy, We have discovered 28 new bright (V < 15) stars with I Fe/H] <-2,5 and 5 with 1Fe/11-11 <-3.0 for success rates of 40 (28/70) and 19 per cent (5/27), respectively. A detailed model atmosphere analysis is carried out for the 28 new metal-poor stars. Stellar parameters were determined from SDSS photometric colours, Gala DR2 parallaxes, MESA/MIST stellar isochrones, and the initial Pristine survey metallicities, following a Bayesian inference method, Chemical abundances are determined for 10 elements (Na, Mg, Ca, Sc, Ti, Cr, Fe, Ni, Y, and Ba), Most stars show chemical abundance patterns that are similar to the normal metal-poor stars in the Galactic halo; however, we also report the discoveries of a new r-process-rich star, a new CF.MP-s candidate with I Y/Ba 0, and a metal-poor star with very low I Mg/Fe I, The kinematics and orbits for all of the highly probable metal-poor candidates are determined by combining our precision radial velocities with Gaia DR2 proper motions. Some stars show unusual kinematics for their chemistries, including planar orbits, unbound orbits, and highly elliptical orbits that plunge deeply into the Galactic bulge (Rperi < 0.5 kpc); also, eight stars have orbital energies and actions consistent with the Gaia-Enceladus accretion event. This paper contributes to our understanding of the complex chemo-dynamics of the metal-poor Galaxy, and increases the number of known bright metal-poor stars available for detailed nucleosynthetic studies.
  •  
5.
  • Whitten, Devin D., et al. (author)
  • The Photometric Metallicity and Carbon Distributions of the Milky Way's Halo and Solar Neighborhood from S-PLUS Observations of SDSS Stripe 82
  • 2021
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 912:2
  • Journal article (peer-reviewed)abstract
    • We report photometric estimates of effective temperature, T (eff), metallicity, [Fe/H], carbonicity, [C/Fe], and absolute carbon abundances, A(C), for over 700,000 stars from the Southern Photometric Local Universe Survey (S-PLUS) Data Release 2, covering a substantial fraction of the equatorial Sloan Digital Sky Survey Stripe 82. We present an analysis for two stellar populations: (1) halo main-sequence turnoff stars and (2) K-dwarf stars of mass 0.58 < M/M (circle dot) < 0.75 in the Solar Neighborhood. Application of the Stellar Photometric Index Network Explorer (SPHINX) to the mixed-bandwidth (narrow- plus wide-band) filter photometry from S-PLUS produces robust estimates of the metallicities and carbon abundances in stellar atmospheres over a wide range of temperatures, 4250 < T (eff)(K) < 7000. The use of multiple narrow-band S-PLUS filters enables SPHINX to achieve substantially lower levels of catastrophic failures (i.e., large offsets in metallicity estimates relative to spectroscopic determinations) than previous efforts using a single metallicity-sensitive narrow-band filter. We constrain the exponential slope of the Milky Way's K-dwarf halo metallicity distribution function (MDF), lambda (10,[Fe/H]) = 0.85 +/- 0.21, over the metallicity range -2.5 < [Fe/H] < -1.0; the MDF of our local-volume K-dwarf sample is well-represented by a gamma distribution with parameters alpha = 2.8 and beta = 4.2. S-PLUS photometry obtains absolute carbon abundances with a precision of similar to 0.35 dex for stars with T (eff) < 6500 K. We identify 364 candidate carbon-enhanced metal-poor stars, obtain assignments of these stars into the Yoon-Beers morphological groups in the A(C)-[Fe/H] space, and we derive the CEMP frequencies.
  •  
6.
  • Youakim, Kris, et al. (author)
  • Tidal debris from Omega Centauri discovered with unsupervised machine learning
  • 2023
  • In: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 524:2, s. 2630-2650
  • Journal article (peer-reviewed)abstract
    • The gravitational interactions between the Milky Way and in-falling satellites offer a wealth of information about the formation and evolution of our Galaxy. In this paper, we explore the high-dimensionality of the GALAH DR3 plus Gaia eDR3 data set to identify new tidally stripped candidate stars of the nearby star cluster Omega Centauri (? Cen ). We investigate both the chemical and dynamical parameter space simultaneously, and identify cluster candidates that are spatially separated from the main cluster body, in regions where contamination by halo field stars is high. Most notably, we find candidates for ? Cen scattered in the halo extending to more than 50(?) away from the main body of the cluster. Using a grid of simulated streams generated with ? Cen-like orbital properties, we then compare the on sky distribution of these candidates to the models. The results suggest that if ? Cen had a similar initial mass as its present day mass, then we can place a lower limit on its time of accretion at t(acc) > 7 Gyr ago. Alternatively, if the initial stellar mass was significantly larger, as would be expected if ? Cen is the remnant core of a dwarf Galaxy, then we can constrain the accretion time to t(acc) > 4 Gyr ago. Taken together, these results are consistent with the scenario that ? Cen is the remnant core of a disrupted dwarf galaxy.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-6 of 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view