SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Yuan Ruixia) "

Search: WFRF:(Yuan Ruixia)

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ji, Tuo, et al. (author)
  • Green Processing of Plant Biomass into Mesoporous Carbon as Catalyst Support
  • 2016
  • In: Chemical Engineering Journal. - : Elsevier BV. - 1385-8947 .- 1873-3212. ; 295, s. 301-308
  • Journal article (peer-reviewed)abstract
    • Four different plant biomass, bamboo, cotton, soft wood and hard wood, were utilized as carbon precursors to fabricate porous carbon catalyst supports via a chemical free approach. Large surface area with unique mesoporous structure was successfully created in the carbon, which made them suitable for catalyst support. After decorating silver nanoparticles onto these carbon supports, nitroaromatics reduction reactions were performed to evaluate the catalyst activity. Results indicate that chemical composition and surface groups of carbon supports determine the metal catalyst nucleation/growth while the porous microstructure of support affects the mass transport of reactant/product across the liquid/catalyst interface. Among the four selected biomass, porous carbon manufactured from soft wood acquires the highest average pore size, pore volume, mesopore volume fraction and best catalytic activity after decorating silver nanoparticles. This work not only presents an environmental benign process that converts natural biomass into effective porous carbon catalyst supports, but also offers a comprehensive understanding of biomass structure/composition relating to their suitability as catalyst support.
  •  
2.
  • Mu, Liwen, et al. (author)
  • Ionic Grease Lubricants : Protic [Triethanolamine][Oleic acid] and Aprotic [Choline][Oleic acid]
  • 2016
  • In: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 8:7, s. 4977-4984
  • Journal article (peer-reviewed)abstract
    • Ionic liquid lubricants or lubricant additives have been studied intensively over past decades. However, ionic grease serving as lubricant has rarely been investigated so far. In this work, novel protic [Triethanolamine][Oleic acid] and aprotic [Choline][Oleic acid] ionic greases are successfully synthesized. These ionic greases can be directly used as lubricants without adding thickener or other additives. Their distinct thermal and rheological properties are investigated and well correlated to their tribological properties. It is revealed that aprotic ionic grease shows superior temperature and pressure tolerant lubrication properties than protic ionic grease. The lubrication mechanism is studies and it reveals that strong physical adsorption of ionic grease onto friction surface plays a dominating role for promoted lubrication instead of tribo-chemical film formation.
  •  
3.
  •  
4.
  • Mu, Liwen, et al. (author)
  • Non-corrosive green lubricants : strengthened lignin–[choline][amino acid] ionic liquids interaction via reciprocal hydrogen bonding
  • 2015
  • In: RSC Advances. - 2046-2069. ; 5:81, s. 66067-66072
  • Journal article (peer-reviewed)abstract
    • A series of novel green lubricants with dissolved lignin in [choline][amino acid] ([CH][AA]) ionic liquids (ILs) have been synthesized in this work. The effect of lignin on the thermal and tribological properties of the lignin/[CH][AA] lubricants was systematically investigated by means of thermogravimetric analysis, differential scanning calorimetry, and a friction and wear tester. The lignin in [CH][AA] has been demonstrated to be an effective additive to improve thermal stability, reduce the wear rates and stabilize the friction coefficients of lignin/[CH][AA] lubricants. Density function theory calculations on the electronic structure of [CH][AA] ILs reveal the atomic natural charge of ILs and their hydrogen bonding capability with lignin. Moreover, these green lubricants show excellent anti-corrosive properties against commercial aluminum and iron boards. The strong physical adsorption of [CH][AA] ILs onto the steel surface and the reciprocal hydrogen bonding between [CH][AA] ILs and lignin synergistically contribute to the enhanced lubrication film strength and thus the tribological properties of these new lubricants. This work provides a new perspective on utilizing complete bio-products in advanced tribological lubrication systems. In addition, this will open a new application venue for lignin to improve product value in lignocellulosic biomass utilization.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view